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ABSTRACT 
 

By imposing directional decisions on traditional two-tailed tests, you will overestimate power, 
underestimate sample size, and ignore the risk of Type III error. You can avoid these problems by 
using the directional two-tailed test. This paper demonstrates how to use PROC POWER to 
estimate the prospective power and Type III error for one-sample, two-sample and paired t tests for 
means, and binomial tests for proportions, using the directional two-tailed testing procedure. 

Examples are given with SAS
® 

codes accompanied by selected results. Power and Type III error 
for the directional two-tailed sign test with unknown direction is also discussed and illustrated with a 
SAS macro written by the author.  

 
INTRODUCTION  
 
In developing a test for deciding whether one of the k populations means is larger (smaller) than the rest, 
under the null hypothesis that all populations are continuous and identical, Mosteller (1948) identified three 
types of error for a statistical decision: (i) Type I error = the probability of “rejecting the null hypothesis when 
it is true”, (ii) Type II error = the probability of “failing to reject the null hypothesis when it is false”, and (iii) 
Type III error = the probability of “correctly rejecting the null hypothesis for the wrong reason” (i.e., the risk 
that both the (rejected) null and (accepted) alternative hypotheses are false. See Mosteller, 1948, p. 63). 
Type III error exists when the false null hypothesis is rejected but the sample having the largest (smallest) 
sample mean does not actually contain the largest (smallest) population mean. In other words, in testing the 
null hypothesis that the means discrepancy is zero, Type III error represents the risk of correctly rejecting 
the null hypothesis in supporting the “wrong direction” of the mean difference (most often because the 
sample with the larger (smaller) sample mean does not come from the population having the larger (smaller) 
population mean). For a t test of any means difference among k population means, two immediate 
consequences of Mosteller’s Type III error can be recognized: (i) It is encountered only when the null 
hypothesis is false but the predicted direction based on the alternative hypothesis does not represent the 
sign (i.e., direction) of the true population means difference, and (ii) If Type III error is possible, or 
encountered, then the conventional definition of statistical power for the test should be modified. For 
example, the conventional definition of power as “the probability that we reject the null hypothesis, say, 
because the rightmost population yields a sample with too many large observations” (Mosterler, 1949, p.61) 
can be revised to be “the probability of both correct rejection and correct of rightmost population, when it 
exists.” (Mosterler,1948, p. 63).  
 
Mosteller’s concept of Type III error renders important implications for statistical decisions. First, in 
acknowledging the possibility of Type III error, we should prefer a (directional) two-tailed test over the one-
tailed alternative. Given the same data, the one-tailed test tends to yield higher power than the two-tailed 
test if the assumed direction is correct. However, if the supported one-tailed alternative is false, its power is 
misleading because, instead of power, it may represent the probability of Type III error. Secondly, it is 
important to realize that Type III error could exist in all statistical tests (e.g., test of means, variances, 
correlations, proportions, etc.) as well as tests with any set of k samples (k > 1). Finally, a procedure to 
estimate the probability of Type III error for two-tailed tests is surely desired. In responding to this need, 
Kaiser (1960) developed a directional two-tailed test. In this paper, we illustrate how to calculate Type III 
error rate by means of PROC POWER, an experimental procedure available in SAS/STAT®, Version 9.1 
(SAS Institute Inc. 2004). In this procedure, the prospective power for Kaiser’s test can be determined. In 
this study, applications for several t tests and an extension for the case of unknown direction in binomial 
tests are discussed. 
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TYPE III ERROR AND POWER FOR t TESTS 
 
GENERAL THEORY 

 
In the conventional two-tailed test, one is restricted to the choice of two hypotheses: Null (H0): 0=δ  

versus Alternative (H1): 0≠δ , where δ represents differences in one of the following parameters: means 

( YX µµδ −= ) of variables X and Y, proportions ( BA ππδ −= ), or correlation coefficients 

( BA ρρδ −= ) of groups A and B. For a given level of Type I error (α ), the conventional test power is 

defined as 
 

βα −=Ψ 1)(C , 

 

where β denotes Type II error (which is defined as “the probability of failing to reject a false null 

hypothesis”). Kaiser (1960) proposed a test that involves three (mutually exclusive) true states of nature (H1, 
H0 and H2) for which the three corresponding hypotheses are specified as: 

 
Left-tailed alternative ((H1): 0<δ , 

Null (H0): 0=δ , 

Right-tailed alternative (H2): 0>δ , 
 

where δ represents one of the differences in population parameters mentioned above. This approach is 
often called the “directional two-tailed test.” For fuller discussions of Kaiser’s test, see Kaiser (1960), Harris 
(1997), Leventhal and Huynh (1996), and Leventhal (1999). Its test power is defined as, 
 

γβα −−=Ψ 1)(K , 

 
where γ represents the Type III error. The maximum value of Type III error for directional two-tailed test is 

equal to 2/α (Kaiser, 1960, p.164). This is also equal to the “power” of one-tailed test evaluated at 2/α  
but the direction specified in the alternative hypothesis is “wrong.” Note that the conventional and Kaiserian 

test powers share the same values of α and β . However, the latter is smaller by the presence of Type III 

error (γ ). The conservative nature of the Kaiserian approach is the strength of this method since it may 

result in larger required sample size for prospective sample size determination. Zumbo and Hubley (1998) 
and Knapp (1999) maintained that prospective power (an estimate of test power for planning purposes) is 
the more meaningful concept than the retrospective, or observed, power (computed after data collection).  
 
Kaiser (1960) and Shaffer (1972) showed that the directional two-tailed test at a predetermined α level is 

equivalent to the testing of two simultaneous one-tailed hypotheses, each evaluated at 2/α . Therefore, by 

conducting two one-tailed tests, each at the size 2/α , KΨ is equal to the power of the one-tailed test for 

which the null hypothesis is rejected, and γ is equal to the power of the other test for which the null 

hypothesis is retained. In using SAS /STAT software, there are two equivalent ways to calculate Type III 
error and power for the directional two-tailed test 
 
METHOD 1: APPLYING BOTH PROC TTEST AND PROC POWER 

 
Type III error, test power and planned sample size for prospective design of directional two-tailed tests can 
be obtained as follows: 
 
(a) Estimating prospective power and Type III error for t tests for a given sample size (n): 

  
(i) Choosing an alpha level (α ), say α = 0.01. 

 
(ii) Evaluating the right-tailed test at α * =α /2, i.e., α * = 0.005, by using PROC 
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 TTEST (for statistical significance evaluation) and PROC POWER (for sample size determination).  
 
(iii) Repeat (ii) for the left-tailed test. 

 

(iv) In (ii) and (iii), if in the t test of PROC TTEST, it is found that “Prob>|T|” < α /2 then KΨ   = the 

power value obtained in PROC POWER. On the other hand, if “Prob>|T|” >α /2, then γ = Type III 

error = the power value obtained in PROC POWER. 
 
(b) Determining the required sample size and Type III error for a desired level of power: 

  

(i) Choosing an alpha level (α ), say α = 0.01 and a desired value of power ( KΨ ), say KΨ  = 

.90. 
 

(ii) Evaluating the directional two-tailed test at α * =α , i.e., α  = 0.01 by using PROC POWER 

with a specified value for power to be KΨ  (= .90, say).  The resulting value of Ntotal is the 

required sample size (n) for the Kaiserian test. 
 
(iii) Evaluating the one-tailed test at α * =α /2 (= 0.005, say) by using PROC POWER with a 

specified value for Ntotal = n = the required sample size above. Then, CΨ  = the resulting value of 

power. Finally, Type III error =  γ  = CΨ  - KΨ . 

 
METHOD 2: APPLYING ONLY PROC POWER 

 
PROC POWER yields the conventional power for one-tailed and (non-directional) two-tailed tests (See 
Chapter 57, SAS/STAT User’s Guide, Version 9.1, SAS Institute Inc. 2004). The default for TEST =, DIST =, 
NULLDIFF =, ALPHA =, and SIDES = options specify a two-sided t test of group means difference equal to 
0, assuming a normal distribution with a significance level of α  = 0.05. Thus, in applying PROC POWER, 
you may need to enter appropriate values for these options. Because PROC POWER can be used to 
evaluate one-tailed test in the same direction as the given effect by specifying SIDES= 1 (i.e., it performs a 
left-tailed test for negative effect, and a right-tailed test for positive effect), a much simpler procedure than 
Method 1 above can be used to estimate Type III error and test power as follows: 

 
(a) Estimating prospective power and Type III error for t tests for a given sample size (n): 

 
 
(i) Choosing an alpha level (α ), say α = 0.01. 

 

(ii) Obtaining the Kaiserian power ( KΨ ) by using PROC POWER with option SIDES=1 at α* 

=α /2 

(iii) Obtaining the conventional power ( CΨ ) by using PROC POWER with option SIDES=2 at α . 

(iv) Then, calculating Type III error =γ  = CΨ  - KΨ . 

 
(b) Determining the required sample size and Type III error for a desired level of power (same as under 
Method 1 above).  
 
SAS® PROGRAM CODES FOR TYPE III AND POWER OF T TESTS 
 
The SAS codes and selected results for some examples involving one-sample, two-sample (with equal and 
unequal variances), paired t tests and binomial test for proportions using PROC POWER to estimate test 
power, Type III error and required sample size are given below. In each case, to save space and computing 
time, both one-tailed and two-tailed hypotheses are invoked in each run (by specifying “Sides=1 2 Alpha = 
.025 .05”),a macro program (%MACRO GAMMA) is used to sort the one-tailed from two-tailed is used (given 
in the APPENDIX). 
 
Note that when SIDES=1 is used for one-tailed tests, this condition implies that the population direction is 
assumed “known” and is the same as that of the specified effect. Therefore, Type III error would be very 
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small. For example, consider the one-sample t test. Suppose in a study of leadership, the mean and 
standard deviation of the measure “Inner Guidance” was expected to be at least 6 and at most 40, 
respectively. The researcher would like to estimate the statistical power if a sample of 150 U.S. military 
officers would be drawn. Upon applying PROC POWER, from the results reported for one-sample t test 
below, the power for N = 150 would be quite low (about 0.42 for both conventional and Kaiserian 
approaches), with Type III error about 0.01% for α  = .05. It appears that the sample size of 356 or more is 
required for a decent power of .80. 

 
1. One-sample t test. 

 
* Determining Type 3 error and power for directiona l tests; 
  Title 'One-sample t Test'; 
  Data One; 
   PROC POWER Plotonly; 
   Ods Output Plotcontent=Plotdata; 
   Onesamplemeans Sides=1 2 Alpha = .025 .05 
   Mean = 6 
   Stddev = 40 
   Ntotal = 150 
   Power = .; 
   plot X=n min=140 max=500; 
   Run; 
   Data Plotdata; 
   Set Plotdata; 
   *******************; 
     %Gamma(Plotdata); 
   *******************; 
   RUN; 
   Proc Delete Data=Plotdata; 
  Run; 
   
Selected results for one-sample t test: 
 

Obs NTotal  PowerC PowerK Type3  

1 140  0.42185  0.42176  .000098581  

2 158  0.46578  0.46572  .000063041  

3 176  0.50765  0.50761  .000040895  

4 194  0.54735  0.54732  .000026852  

5 212  0.58479  0.58477  .000017816  

6 230  0.61996  0.61995  .000011929  

7 248  0.65287  0.65286  .000008052  

8 266  0.68353  0.68353  .000005474  

9 284  0.71202  0.71202  .000003745  

10 302  0.73841  0.73840  .000002577  

11 320  0.76277  0.76277  .000001783  

12 338  0.78520  0.78520  .000001239  

13 356  0.80581  0.80581  .000000865  

 
2. Two-sample t test with equal variances. 
 
 Title 'Two-sample t Test with Equal Variances'; 
 PROC POWER Plotonly; 
 Ods Output Plotcontent=Plotdata; 
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  Twosamplemeans Test=diff Sides=1 2 Alpha =.025 .0 5 
  Groupmeans = 40|45 
  Stddev = 16 
  Ntotal = 60 
  Power = .; 
  plot X=n min=50 max= 500; 
  Run; 
  Data Plotdata; 
   Set Plotdata; 
  *******************; 
     %Gamma(Plotdata); 
  *******************; 
  RUN; 
  Proc Delete Data=Plotdata; 
  Run; 
   
Selected results for two-sample t test with equal variances: 
 

Obs NTotal  PowerC PowerK Type3  

1 50 0.19138  0.19021  .001170645  

2 72 0.25765  0.25711  .000541829  

3 94 0.32272  0.32245  .000270861  

4 116  0.38556  0.38542  .000142378  

5 138  0.44543  0.44535  .000077589  

6 160  0.50181  0.50177  .000043461  

7 182  0.55439  0.55437  .000024883  

8 204  0.60301  0.60300  .000014504  

9 226  0.64763  0.64762  .000008582  

10 248  0.68831  0.68830  .000005144  

11 270  0.72518  0.72517  .000003117  

12 292  0.75841  0.75841  .000001908  

13 314  0.78822  0.78822  .000001178  

14 336  0.81485  0.81485  .000000733  

 
3. Two-sample t test with unequal variances. 
 
Title 'Two-sample t Test with Unequal Varainces'; 
 PROC POWER Plotonly; 
 Ods Output Plotcontent=Plotdata; 
 Twosamplemeans Test=diff_satt Sides=1 2 Alpha =.02 5 .05 
 Nfractional 
 Groupmeans = 40|45 
 Groupstddevs = 14|18 
 Ntotal = 60 
 Groupweights = (1 1.5) 
 Power = .; 
 plot X=n min=50 max=500; 
  Run; 
 Data Plotdata; 
 Set Plotdata; 
  *******************; 
     %Gamma(Plotdata); 
  *******************; 
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 RUN; 
 Proc Delete Data=Plotdata; 
 Run; 
 
Selected results for two-sample t test with unequal variances: 
 

Obs NTotal  PowerC PowerK Type3  

1 50 0.18982  0.18865  .001177782  

2 73 0.25894  0.25841  .000530647  

3 96 0.32660  0.32635  .000259131  

4 119  0.39175  0.39162  .000133357  

5 142  0.45359  0.45352  .000071258  

6 165  0.51160  0.51156  .000039180  

7 188  0.56544  0.56542  .000022037  

8 211  0.61498  0.61497  .000012626  

9 234  0.66021  0.66020  .000007348  

10 257  0.70121  0.70121  .000004333  

11 280  0.73816  0.73816  .000002585  

12 303  0.77126  0.77126  .000001557  

13 326  0.80077  0.80077  .000000947  

 
4. Paired t test of dependent means: 
 
Title 'Paired t Test'; 
 Data One; 
   PROC POWER Plotonly; 
   Ods Output Plotcontent=Plotdata; 
   Pairedmeans test=diff Sides=1 2 Alpha = .025 .05  
pairedmeans = 83.2294 | 90.4941 
Corr = 0.351 
pairedstddevs = (5.0167 8.4751) 
npairs = 7 
Power = .; 
plot X=n min=5 max=20 Step=1; 
Run; 
Data Plotdata; 
Set Plotdata; 
Ntotal = npairs; 
*******************; 
  %Gamma(Plotdata); 
*******************; 
RUN; 
 
Selected results for paired t test with dependent means: 
 

Obs 
Ntota

l PowerC PowerK Type3  

1 5 0.33123  0.33107  .000163312  

2 6 0.42025  0.42018  .000069486  

3 7 0.50333  0.50330  .000030868  

4 8 0.57873  0.57871  .000014185  
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Obs 
Ntota

l PowerC PowerK Type3  

5 9 0.64575  0.64574  .000006700  

6 10 0.70437  0.70437  .000003236  

7 11 0.75497  0.75496  .000001593  

8 12 0.79815  0.79815  .000000797  

 
TYPE III ERROR AND POWER FOR BINOMIAL TESTS 
 
POPULATION DIRECTION IS ASSUMED KNOWN 
 
The same procedures in Methods 1 and 2 above can be applied to estimate planned sample size, power 
and Type III error for testing hypotheses about proportions upon replacing the codes for t tests by those for 
binomial tests. As an example, in a double-blind listening study, suppose n listeners were asked to identify 
differences between sound components in a (well-designed and well-conducted) experiment. Let π and p 
represent the population and observed proportions of correct identification, respectively. Suppose a 
directional two-tailed sign test was used, given n = 10, π = .50 and p = .30. The hypotheses can be 
specified as:  
 

Left-tailed alternative ((H1): π  < .50 
Null (H0): π  = .50, 
Right-tailed alternative (H2): π  > .50. 
 

In a single-listener study, π  can be interpreted as the proportion of correct choices the listener is capable of 
making over an infinite number of trials, from which the trials in one’s study constitute a random sample. In a 
test with multiple listeners, each receiving multiple trials, then there are three possibilities for data analysis: 
each listener can constitute a separate experiment, each trial can constitute a separate experiment, or one 
can combine listeners and trials to produce a single experiment. 
 
First, the Kaiserian power and Type III error can be calculated by using the option SIDES=1 for one-tailed 
tests as in t tests above (i.e., the population direction is assumed to be the same as that specified in the 
alternative hypothesis). The SAS code and relevant PROC POWER results are given below. 

 
Data Rate; 
 *Two-tailed test at Alpha = 0.05; 
  PROC POWER Plotonly; 
  Ods Output Plotcontent=Plotdat2; 
  Onesamplefreq test=Exact Sides=2 Alpha = .05 
  Nullproportion = 0.50 
  Proportion = 0.30 
  Ntotal = 10 
  Power = .; 
  plot X=n min=8 max=20 Step=2; 
  Run; 
 Data Plotdat2; 
  Set Plotdat2; 
  Count+1; 
  PowerC = Power; 
 Data Two; 
  Merge Plotdat1 Plotdat2; 
  by Count; 
  Type3 = PowerC - PowerK; 
  O ds  rft file ="Power.rtf" ; 
  Proc Print; 
  Var Sides Alpha Ntotal PowerC PowerK Type3; 
 Run; 
  Ods rft close; 
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Obs Alpha  NTotal PowerC PowerK Type3  

1 0.00781  8 0.05771  0.05765  .000065610  

2 0.02148  10 0.14945  0.14931  .000143686  

3 0.03857  12 0.25302  0.25282  .000206376  

4 0.01294  14 0.16086  0.16084  .000025307  

5 0.02127  16 0.24589  0.24586  .000033601  

6 0.03088  18 0.33269  0.33265  .000039496  

7 0.04139  20 0.41641  0.41637  .000042940  

 

Note that as N increases, the power values (under PowerC = conventional definition and PowerK= Kaiserian 
definition) and type III demonstrate a saw-tooth pattern (See also Example 56.2, pp. 3248-3255 in 
SAS/STAT User Guide, SAS Institute Inc., 2004). 
 
POPULATION DIRECTION IS UNKNOWN 
 
In all the examples so far, because SIDES=1 is used for one-tailed tests in computing the Kaiserian power, 
Type III error would be quite small. However, this is not the case when the population direction is assumed 
unknown as it will be illustrated for the following binomial tests.  
 
A macro (%POWBIN) is written by the author to calculate sample size (N), critical values (cv), probabilities 
of type I error (α ), Type III error (γ ) and power for the binomial tests that do not use the option SIDES=1 

for one-tailed tests. The critical values (cv) are the sample sizes needed for statistical significance (i.e., for 
rejecting a null hypothesis in favor of an alternative one). For example, cv = (R, M) = (9, 1) means that nine 
or more correct choices  (R ) are needed to reject  H0  in favor of  H2, and one or fewer correct choices (M) 
are needed to reject H0  in favor of H1. 
 
The macro %POWBIN compute all critical values for N=8(2)20. For example, selected results for N = 10 and 
N=20 are listed below. 
 

N=10 
 

Obs N R M Alpha Power6 Gamma6 Power7 Gamma7 Power8 Gamma8 Power9 Gamma9 

9 10 10 0 .0020  .0060  .0001  .0282  .0000  .1074  .0000  .3487  .0000  

10 10 9 1 .0215  .0464  .0017  .1493*  .0001*  .3758  .0000  .7361  .0000  

11 10 8 2 .1094  .1673  .0123  .3828  .0016  .6778  .0001  .9298  .0000  

12 10 7 3 .3438  .3823  .0548  .6496  .0106  .8791  .0009  .9872  .0000  

13 10 6 4 .7539  .6331  .1662  .8497  .0473  .9672  .0064  .9984  .0001  

 
 

N=20 
 

Obs N R M Alpha Power6 Gamma6 Power7 Gamma7 Power8 Gamma8 Power9 Gamma9 

49 20 18 2 .0004  .0036  .0000  .0355  .0000  .2061  .0000  .6769  .0000  

50 20 17 3 .0026  .0160  .0000  .1071  .0000  .4114  .0000  .8670  .0000  

51 20 16 4 .0118  .0510  .0003  .2375  .0000  .6296  .0000  .9568  .0000  

52 20 15 5 .0414  .1256  .0016  .4164*  .0000*  .8042  .0000  .9887  .0000  

53 20 14 6 .1153  .2500  .0065  .6080  .0003  .9133  .0000  .9976  .0000  

54 20 13 7 .2632  .4159  .0210  .7723  .0013  .9679  .0000  .9996  .0000  
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For these tables, the following notations are used:  R and M = critical values needed to reject the null 
hypothesis (R + M = N), Power6 = Kaiserian power forπ = (0.6, 0.4), Power7 = Kaiserian power forπ = (0.7, 
0.3), Power8 = Kaiserian power forπ = (0.8, 0.2), Power9 = Kaiserian power forπ = (0.9, 0.1). Similarly, 
Gamma6 = Type III error for π = (0.6, 0.4), etc. The “ALPHA” column provides the actual α (the actual type 
I probability) produced by the critical values (R, M). The remaining columns list power and γ for a number of 

π  values. The Kaiserian power and type III results obtained with SIDES=1 option above are reproduced 
and identified by the asterisk (*). Note that for a given configuration of power, (e.g. Power7, π = (0.7, 0.3), 
and N = 10), the values of power and type III estimates increase steadily as the critical value R decreases 
(or M increases). 

 
DISCUSSION AND CONCLUSIONS 

 
Suppose an experimenter conducts a right-tailed test at the .05 level and finds that the sample mean is not 
large enough to be statistically significant. Worst, the sample mean is in fact negative. She now finds herself 
sorely tempted to conduct a left-tailed test to determine whether the sample mean is small enough to be 
statistically significant. Suppose she yields to the temptation and carries out the left-tailed test. The biggest 
problem with this procedure is that both the t statistic and the nominal alpha level will become invalid. Meeks 
and D’Agostino (1983) argued that in a strict two-stage inference procedure (in which the hypothesis of 
interest is tested first and if it results in a rejection decision then proceed with estimating the relevant 
parameter) then the conventional confidence limits and associated test statistics are no longer valid. Instead, 
she should have conducted one directional two-tailed test. Although this is equivalent to simultaneously 
performing two one-tailed tests, each at α /2, both the form of the test statistic and the size of the nominal 
alpha level are protected.  Although this test has just begun to stir up some interests in the educational and 
behavioral literature (Hand, McCarter & Hand,1985; Harris, 1997; Hopkins, 1973),  it is hoped that it will 
become more popular due to its straightforward procedure and practical implications.   
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APPENDIX  
 
THE MACRO PROGRAM %GAMMA FOR CALCULATING POWER AND TYPE III ERROR 
 
  %MACRO GAMMA(Plotdata); 
  Data Side1; 
  Set Plotdata; 
  If Sides=2 then delete; 
  Count+1;   
  If Sides=1 and Alpha > .03 then delete; 
  PowerK = Power;  
 Data Side2; 
  Set Plotdata; 
  If Sides=1 then delete; 
  If Sides=2 and Alpha < .04  then delete; 
  PowerC = Power; 
 Data Side2; 
  Set Side2; 
  Count+1; 
 Data Two; 
  Merge Side1 Side2; 
  by Count; 
  Type3 = PowerC - PowerK; 
  If Ttype = 4 then Ntotal = Npairs; 
 
 Proc Print; 
  Var Sides Ntotal PowerC PowerK Type3; 
 Proc Delete Data=Plotdata One; 
 Run; 
%Mend;  
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