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Abstract. Geostatistics brings to ecology novel tools for the interpretation of spatial 
patterns of organisms, of the numerous environmental components with which they in- 
teract, and of the joint spatial dependence between organisms and their environment. The 
purpose of this paper is to use data from the ecological literature as well as from original 
research to provide a comprehensive and easily understood analysis ofgeostatistics’ manner 
of modeling and methods. The traditional geostatistical tool, the variogram, a tool that is 
beginning to be used in ecology, is shown to provide an incomplete and misleading summary 
of spatial pattern when local means and variances change. Use of the non-ergodic covariance 
and correlogram provides a more effective description of lag-to-lag spatial dependence 
because the changing local means and variances are accounted for. Indicator transforma- 
tions capture the spatial patterns of nominal ecological variables like gene frequencies and 
the presence/absence of an organism and of subgroups of a population like large or small 
individuals. Robust variogram measures are shown to be useful in data sets that contain 
many data outliers. Appropriate removal of outliers reveals latent spatial dependence and 
patterns. Cross-variograms, cross-covariances, and cross-correlograms define the joint spa- 
tial dependence between co-occurring organisms. The results of all of these analyses bring 
new insights into the spatial relations of organisms in their environment. 
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tergram: indicator variogram: Mus; non-ergodic correlogram and cross-correlogram: non-ergodic co- 
variance and cross-covariance; Pterostichus; spatial dependence of organisms in environment; spatial 
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INTRODUCTION 
What is geostatistics and why use it? 

Statistical procedures are often used to organize and 
summarize data so that meaningful inferences can be 
made about phenomena ofinterest. Commonly in ecol- 
ogy the foundation of such an inference is a statistical 
test like a t ,  F, and x2 test or a procedure like an analysis 
of variance (ANOVA). These tools are convenient and 
easy to implement, but they generally assume that any 
one datum is independent of all other data and that 
the data are distributed identically. Are these assump- 
tions tenable for most ecological investigations? We 
submit that assuming spatial dependence is more prac- 
tical and realistic, since what we identify as ecological 
phenomena involves a recognition of correlation. 

’ Manuscript received 10 September 1990; revised 25 May 
1991; accepted 28 May 1991. 

Spatial and temporal dependence or continuity should 
be readily apparent to the ecologist: vegetation species 
and densities are generally different on north-facing vs. 
south-facing slopes; grasshoppers (Orthoptera) are more 
dense during hot, dry periods; and in greenhouse ex- 
periments plants are routinely rotated to eliminate 
microclimatic and microenvironmental (space-time) 
effects. Ecological analysis normally includes investi- 
gations of the dispersion and patterns in association 
between different species at different places and at dif- 
ferent times (Pielou 1977)-patterns that reflect spatial 
dependence, not independence. Indeed, the very defi- 
nitions of ecology, like “the study of the natural en- 
vironment, particularly the interrelationships between 
organisms and thir surroundings” (Ricklefs 1973) and 
“the scientific study of the relationships between or- 

ganisms and their environments” (McNaughton and 
Wolf 1973), or of key concepts, such as levels of or- 
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FIG. 1. Perspective plot of Hengeveld’s (1979) summer 
collection of the carabid Dyschirius globosus on a reclaimed 
polder. Separation distance between intersection points on 
the sampling grid is 40 m. 

ganization (Odum 1975), presuppose spatial and tem- 
poral dependence. 

Spatial dependence is particularly important in an 
analysis of spatially varying organism distributions and 
environmental variables, yet many traditional statis- 
tical measures tend to ignore it. Consider Hengeveld’s 
(1979) report of the spatial distribution of a carabid 
beetle, Dyschirius globosus, on an 800 x 400 m re- 
claimed Netherland polder. Five pitfall traps were ar- 
ranged in a hexagon and centered at each node of a 2 1 
x 12 sampling grid spaced 40 m apart, and the num- 
bers of D. globosus caught during the months April- 
August were reported. A perspective plot (Fig. 1) of the 
data reveals a marked concentration of the organism 
around the center of the sampling space. In addition, 
two areas near the center of this concentration display 
particularly large values. Overall, the value at any one 
location is similar to the values at neighboring loca- 
tions. 

Consider another very different distribution, one dis- 
tributed over a sampling space of equivalent dimen- 
sions to Hengeveld’s design (Fig. 2). Unlike the spa- 
tially continuous D. globosus distribution, this new 
pattern contains disjoint large, medium, and small con- 
centrations throughout the sampling space, with no 
readily apparent pattern. Nevertheless, because this new 
grid is merely a randomized version of the D. globosus 
data, both grids contain precisely the same sample size 
and values. Thus, each has exactly the same frequency 
distribution and univariate statistics (Fig. 3). A statis- 
tical analysis or test based solely on measures such as 
mean, variance, coefficient of variation, or frequency 
distribution cannot capture their obvious differences. 
A different organizing and summarizing tool is need- 
ed- one that characterizes the degree of spatial depen- 
dence, or lack thereof, between sampling locations. 

There are many techniques that can distinguish be- 
tween the obviously different spatial distributions por- 

trayed in Figs. 1 and 2. One class of statistical tools 
concentrates on the statistical modeling of spatial de- 
pendence and is known as “geostatistics.” Geostatistics 
is a branch of applied statistics that focuses on the 
detection, modeling, and estimation of spatial patterns. 
Although the mainstay of developments in this field 
have come from geology and mining, as will be seen 
shortly (The tools of geostatistics applied. . . : The var- 
iogram: a bivariate, statistical model, below), the de- 
velopment and use of one key technique has an old, if 
largely forgotten, history in forestry (cf. MatCrn 1960). 

There is more to geostatistics than the 
variogram and kriging 

Recently ecologists have begun to implement two 
geostatistical techniques: variography, which is one way 
to model spatial dependence, and kriging, which pro- 
vides estimates for unrecorded locations. Philips (1 985) 
uses variograms and their fractal representation to 
monitor shoreline erosion rates in New Jersey’s Del- 
aware Bay to test the hypothesis that a common reed 
accelerated the erosion. Robertson (1 987) provides two 
examples of geostatistical applications: ( 1) temporal 
variability of the density of cell counts for a Rhodo- 
monas sp. in a lake epilimnion and (2) spatial vari- 
ability of soil mineral nitrogen in a Michigan old-field. 
Kemp et al. (1989) use statewide grasshopper (Or- 
thoptera: Acrididae) counts in three regions of Mon- 
tana to create, with kriging, region-specific macroscale 
hazard maps of grasshopper densities. Schotzko and 
O’Keeffe (1 989) model the spatial variability of the 
Lygus bug Lygus hesperus in an agricultural field and 
then use kriging to map that organism’s density. 

These studies point to increased interest in geosta- 
tistical methods in ecology, but they leave important 
considerations, explanations, and  caveats unad- 
dressed. One missing feature is a description of the 
underlying theory and assumptions of geostatistics. 

FIG. 2. Perspective plot of Hengeveld’s (1979) carabid 
beetle data, which were presented in Fig. 1; here they have 
been rearranged randomly over the same sampling space. 
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These foundations must be appreciated in order that 
the transfer of the techniques be accomplished effec- 
tively and correctly. Moreover, the mainstay of geosta- 
tistical literature can present an often-daunting array 
of jargon and mathematical and statistical formulas. 
Our goal is to present a primarily intuitive appreciation 
of these foundations-one that contains a minimum 
of mathematical and statistical nomenclature, but one 
that is rich in ecological examples and yet theoretically 
rigorous. 

More importantly, ecology stands to benefit greatly 
by a presentation of modeling and estimation tech- 
niques not utilized in the aforementioned papers. As 
we show below, unusually large and small data (i.e., 
outliers) can greatly affect the interpretation of spatial 
dependence when using the variogram. It is critical, 
therefore, to be aware of methods for their identifica- 
tion and to have an understanding of the circumstances 
in which their removal is valid. Additionally, we pro- 
vide examples of a type of variogram, known as an 
“indicator variogram,” that can be used to model the 
spatial dependence between nominal ecological vari- 
ables such as gene frequencies. We also show how in- 
dicator variograms can be used to model the spatial 
dependence of a particular size class of the organism’s 
total sample set. This provides a potent new dimension 
to the traditional variogram because it permits iden- 
tification of the spatial patterns of ecologically mean- 
ingful subgroups within a population, like the youngest 
or smallest individuals vs. the oldest or largest ones. 

Other very powerful modeling tools for ecological 
analysis, ones absent from the above-mentioned pa- 
pers, model the joint spatial dependence between two 
co-occurring species or between an organism and a 
known or suspected influential component of its en- 
vironment. These techniques strike at the heart ofwhat 
is ecology. 

Finally, and most importantly, using ecological ex- 
amples we demonstrate that the variogram modeling 
tool used in the above papers may actually provide an 
incomplete image of spatial pattern. This is because 
the variogram is affected strongly by small-scale or 
local mean and variance differences. Alternative spatial 
modeling tools are described and illustrated, ones that 
are more resistant to small-scale data effects. These 
alternative tools not only uncover spatial dependence 
more accurately, they can also uncover spatial patterns 
undetected by the variogram. 

We use data from the botanical and zoological lit- 
erature to describe and illustrate new geostatistical 
methods. Using already-published data is helpful be- 
cause a comparison between the findings and the results 
of geostatistical and conventional analyses can hasten 
comprehension of new terms and analytic procedures 
and improve interpretations. 

In this paper we describe the underlying rationale 
and procedures of geostatistics, develop its analytical 
tools, and delve into some allied techniques that are 
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shown to be particularly helpful in ecological analysis. 
The emphasis is on how the analytical tools can be 
used to interpret plant and animal spatial patterns, 
regardless of whether the models are ever used in a 
kriging procedure to estimate values for unrecorded 
locations. 

Readers interested in a fully developed, introductory 
text on geostatistical theory and practice are strongly 
encouraged to see Isaaks and Srivastava’s ( 1  989) recent 
work. For its clarity, rigor, and rich illustrations, there 
is no finer one. Concise introductory works that use 
examples from soil science and agronomy are Vieira 
et al. (1 983), Burgess and Webster ( 1  980), and Webster 
(1985). More complete texts by Journel and Huijbregts 
(1978), David (1977, 1988), and Rendu(l981) require 
a working knowledge of matrix algebra as well as in- 
tegral calculus, and use mining examples exclusively. 
Recent short lessons (40 pages) by Journel(l989) pro- 
vide an updated review of modem geostatistics, but do 
not present any case studies. 

Ecology has produced a large and long-lived litera- 
ture on spatial patterns and their interpretation. It is 
not our intention to review these works since they are 
most likely already familiar to most ecologists and ex- 
cellent reviews are readily available. Our purpose is to 
develop the geostatistical approach, an approach that 
is probably less familiar and one that, until recently, 
has been used sparingly. Prominent among the many 
extant ecological works are Greig-Smith’s (1983) ex- 
cellent treatment of botanical spatial patterns and Tay- 
lor’s (1984) review of methods for diagnosing insect 
distributions. Pielou’s (1 977) text offers a developed 
assessment of frequently used spatial analysis tools. 
Cliff and Ord (1 973), Ripley (1 98 1, 1988), and Diggle’s 
(1983) books are important sources of methods for 
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FIG. 4. Contour plots ofbeetle counts in Hengeveld’s (1 979) 
summer collections of Dyschirius globosus and Pterostichus 
cnerulescens and the fall collection of P. coerulescens. Grid 
spacing is 40 m. as in Fig. 1. 

sampling and analysis of spatial point patterns in ecol- 
ogy. Patil et al. (1 97 1 a, 6 ,  c) ,  Cormack et al. (1 979), 
Cormack and Ord (1 979), Grassle et al. (1 979), Ord et 
al. (1979), and Orloci et al. (1979) provide compre- 
hensive references and numerous examples of appli- 
cations. 

An approach that is related to geostatistics, one that 
has been applied in ecology, is that of time series as 
applied to spatial patterns. Platt and Denman (1975) 
offer a clear review of the use of this technique in 
ecology, Shugart (1978) provides a good collection of 
papers on the topic, and Ford (1976), Ripley (1978), 
Ford and Renshaw (1 984), Renshaw (1 984), and Ren- 

shaw and Ford (1 984) can be consulted for interesting 
applications. Both geostatistics and time series utilize 
the covariance function (defined below-see Eq. l),  but 
time series focuses on Fourier transforms of the data, 
and thus calculations are performed in frequency do- 
main. This transformation places practical restrictions 
on the input data and on subsequent interpretations. 
In the time-series method input data are usually con- 
tinuous (i.e., rather than categorical) and are arrayed 
on a regular grid. Sparse or irregularly spaced data do 
not present a problem for geostatistics. The time-series 
approach is designed to recognize periodic components 
of the spatial phenomenon. Geostatistics is capable of 
uncovering the periodic as well as the often non-pe- 
riodic nature of ecological parameters. On a practical 
level, because time-series’ calculations are performed 
in frequency domain and then back-transformed, cal- 
culations can often be complex and tedious. Geosta- 
tistical operations are performed in the original data 
domain and are therefore easier to both calculate and 
interpret. 

GEOSTATISTICAL PROCEDURE IN 

ECOLOGICAL ANALYSIS 
The fundamental maxim of geostatistics. -Before 

delving into examples, it is important to emphasize a 
fundamental precept of geostatistical analysis: geosta- 
tistics is never a replacement for sound ecological rea- 
soning. This precept is true for any statistical procedure 
and may seem self evident, yet in practice it is fre- 
quently overlooked. No matter how compelling the 
result, to be credible a statistical or geostatistical find- 
ing must receive support from the data or, at a mini- 
mum, from ecological theory. All statistics corroborate 
or contradict; they cannot prove or disprove. 

Exploratory data analysis before geostatistics. -The 
first task in all geostatistical investigations is not at all 
geostatistics. Before computing any of the spatial sta- 
tistics customarily associated with geostatistics, an ex- 
haustive exploratory data analysis (or EDA) should be 
performed (Tukey 1977). An EDA involves computing 
traditional univariate and bivariate statistics, histo- 
grams, regression plots, and scattergrams. With mul- 
tivariate data, an EDA may also include cluster anal- 
ysis, principal component analysis, and an analysis of 
variance. Only after this initial foundation has been 
established should spatial statistics be entertained, be- 
cause the results obtained from each step guide the 
kinds of analyses capable of producing meaningful re- 
sults in the following steps. As an introduction, we now 
present the EDA highlights of four ecological data sets. 
These works will be used to demonstrate geostatistical 
methods. 

Data set 1: carabid beetle densities on a 
reclaimed polder 

Hengeveld’s (1 979) report of the distribution of Dys- 
chirius globosus on a reclaimed polder has already been 
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partially introduced (see Introduction: What is geosta- 
tistics . . . above). Hengeveld also provides counts of 
another carabid species, Pterostichus coerulescens, cap- 
tured during the same summer (April-August) period 
and for the following fall (September-October) period 
as well. Isarithmic maps of the counts reveal the sum- 
mer areal distribution of P. coerulescens to be different 
from that of D. glcbosus (Fig. 4). The pattern of the 
distribution of P. coerulescens changes little between 
seasons, though there are many more beetles in the fall. 
P. coerulescens’ distribution displays a pronounced 
trend, one that is stronger and confined to a smaller 
portion of the whole sampling grid during the fall. 

Perspective and isarithmic plots of data permit quick 
appraisal of spatial features and trends, but they are 
not very efficient summaries. Moreover, given the na- 
ture or arrangement of the data, it may not always be 
practical or possible to compute such plots. In those 
instances, univariate and bivariate statistics and plots 
help to uncover important spatial features of the data. 

A useful univariate summary of data is a frequency 
table and its corresponding graph, the histogram. Fre- 
quency distributions are useful because they provide a 
description of the probability or likelihood associated 
with a given value. For example, in the histograms for 
both D. globosus (Fig. 3 )  and P. coerulescens (Figs. 5 
and 6), the largest proportion of sampling locations 
contains the smallest number of beetles while the larg- 
est concentrations occur with the smallest frequency. 
These important features can be described by a sum- 
mary statistic like “skewness.” Skewness refers to a 
histogram’s symmetry about the mean; the predomi- 
nance of small or large data make a histogram asym- 
metric. The positive skew evident in the carabid beetle 
samples attest to their frequency distributions’ drawn- 

k u r r o e r  2 5 2  
U e a n  2 7 0 . 3 6  
S t a -, c c r c 2 ev i c : i o P 2 7 1 . 6 1  
Coef’icient o f  Var ic t ion  1 .01 
Skewpess 1.14 
L1 i n ’ r r  L r r  0 
L1 e c i  a -, 2 1 7  
U c x i m u m  1414 
\Lrn>er  o f  0 ’ s  6 

I -  

- 

A- r r  
I ’  

3 530 1033 1500 2330 2530 

Beet les /S l te  

FIG. 5 .  Frequency histogram and some summary statistics 
for Hengeveld’s (1  979) summer collection of the carabid 
Pterostichus coerulescens. 
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FIG. 6. Frequency histogram and some summary statistics 
for Hengeveld’s (1979) fall collection of the carabid Pterostr- 
chus coerulescens. 

out lengths and asymmetric shapes about their means. 
Another useful statistic that expresses a histogram’s 
overall spread around its mean is the “coefficient of 
variation.” The coefficient of variation is simply the 
ratio of the sample standard deviation to its mean. 

Another constructive way to describe the carabid 
distributions is to analyze their bivariate distributions. 
Because bivariate statistics and plots characterize the 
relationships and dependencies between any two vari- 
ables, they can yield a richer summary of the data than 
a univariate description can. 

Consider some bivariate scatter plots for D. globosus 
(Fig. 7). The top two graphs plot the sample numbers 
as a function of their X (long grid side) and Y (short 
grid side) locations, and the bottom left graph plots the 
beetle’s density as a function of the sum of the X and 
Y directions. These particular directions are chosen for 
demonstrative purposes only. Any linear combination 
of directions (i.e., aX + b Y )  may be plotted in an 
attempt to reveal directional trends or discontinuities. 
When there are many data, or when samples are dis- 
tributed in spatially distinct regions, quick visual ap- 
praisal of the raw data may not be possible. In such 
circumstances the researcher may have to plot multiple 
linear combinations in search of prominent trends and 
discontinuities. 

As is evident in the shape of the scatter of points in 
Fig. 7 ,  D. globosus’ distribution is clumped in the center 
of the X direction and favors the smaller-valued por- 
tion of the Y direction. Plot D compares the sample 
values between the two species and shows that areas 
of large concentrations of D. globosus correspond to 
areas where P. coerulescens densities are around 300 
individuals/site. 

The linear strength of these bivariate relations is 
summarized using covariance and correlation coeffi- 
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value, the sum of the X and Y direction values, and the number of Pterostichus coerulescens found at the same location and 
time of collection (data from Hengeveld 1979). 

cients. The estimated covariance, 6,,, between two 
variables, u and v, is the average product of the differ- 
ences between each variable and their respective means, 
m,, and m,: 

where N is the total number of pairs of sample values 

Eq. (1)  may appear a bit peculiar when compared to 
the more traditional formulation of this statistic. Typ- 
ically N - 1 is used as a denominator rather than 
simply N. The denominator N - 1 is theoretically 
justified when the data are independent- indepen- 

(u,, v,). 

dence across the u,, v, pairs. Geostatistics does not use 
this justification because it starts from the assumption 
of data correlation, correlation between pairs of spa- 
tially arrayed data. Also, formulae in most geostatist- 
ical references frequently do not distinguish between 
the parameter estimates and the true statistical param- 
eters. To the practiced geostatistician, the context of 
the discussion is usually sufficient to differentiate the 
two. However, in keeping with the traditional conven- 
tion, the present paper will denote estimates with a ''h" 

symbol. 
A covariance value depends on the units of mea- 

surement of both variables u and v. A unit-free or 
dimensionless measure is obtained by standardizing 
the covariance by the product of the two standard de- 
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the number found during the summer collection (data from 
Hengeveld 1979). 

viations. The resulting statistic is known as the esti- 
mated Pearson product-moment or the linear corre- 
lation coefficient: 

The Pearson correlation coefficient measures how well 
one variable can be represented as a linear function of 
the other. This statistic can range from - 1 to + 1 de- 
pending on whether the variables are related linearly 
in a negative or positive manner; a score of - 1 cor- 
responds to perfect negative linear correlation and 
+ 1 to perfect positive linear correlation. A +0.107 
correlation between the two beetles suggests a very 
low positive linear relationship exists between their 
densities (see Fig. 7). 

Nevertheless, the two variables u and v could be 
highly dependent without being linearly related, a clas- 
sic example being: u = v2. A measure of monotonic 
dependence, whether linear or not, is the "Spearman 
rank correlation" (Davis 1986). The Spearman rank 
correlation is none other than the linear correlation 
coefficient of the data's ranks. For instance, sample u, 
has rank R,,, and is equal to 1 if it is the smallest value 
and N if it is the largest value of u. Similarly, the 
corresponding sample v, has rank R,!. The Spearman 
rank correlation coefficient is thus defined as: 

;Ron& = (3) 
N S R ~ R ,  

where mRu and mR, are the means of the ranks of the 

u and v values, and sR,, and sR, are the standard devi- 
ations of the ranks of the u and v values. 

Notice that when comparing D. globosus and P. coe- 
rulescens densities, the Spearman correlation coeffi- 
cient is different from the Pearson correlation coeffi- 
cient. The small Pearson but large Spearman statistics 
suggest that the relationship between D. globosus and 
the co-occurring P. coerulescens beetle could be non- 
linear. 

However, this comparison pairs locations where no 
beetles are present for one species with those where the 
other species does exist. Namelq, there are 8 1 D. glo- 
bosus locations and 6 P. coerulescens locations where 
no beetles of the other species were present. Another 
way to analyze the data is to compare only those lo- 
cations that actually contain both beetles. When these 
latter locations are analyzed, the Pearson statistic be- 
comes -0.076 and the Spearman statistic an incon- 
sequential 0.138. Thus, the relationship between the 
two co-occurring beetles is apparently neither linear 
nor monotonic. 

Consider the bivariate scatterplot and summary sta- 
tistics for P. coerulescens between the summer and fall 
collections (Fig. 8). Even when the non-zero data lo- 
cations are considered, there is a strong, positive, and 
linear relationship between the numbers of P. coeru- 
lescens in the summer and in the fall. 

Data set 2: acorn barnacles, Balanus balanoides, 
on the side of a ship 

Kooijman ( 1  976) provides another example of an 
organism's spatial distribution using a grid count. A 
10 x 10 grid, 0.75 x 0.75 m, was superimposed on 
the hull of a cutter docked in Scheveningen, Holland, 
and the acorn barnacles, Balanus balanoides, in each 
cell were counted. In all, 166 barnacles were counted 
in the sampling grid. A plot of the cell counts reveals 
four distinct areas of large density and no overali di- 
rectional preferences (Fig. 9). As can be seen in the 

' 0 1 2 3 4 5 5 7 5 9  

FIG. 9. Diagram of Kooijman's (1976) acorn barnacle 
(Balanus balanoides) grid-count data. Grid cells were ~ 7 . 5  
x 7.5 cm. 
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tics for Kooijman's (1976) data presented in Fig. 9. 

histogram for these data (Fig. lo), > 60 of the 100 cells 
contain either one or no barnacles while two of the 
cells are populated with the largest (8 and 9) densities 
of barnacles. The large proportion of small or no bar- 
nacles is reflected in the distribution's strong positive 
skew. 

In a later work Kooijman (1979) sketches the out- 
lines of all 166 barnacles within the sampling space, 
showing their relative size (Fig. 11). This new per- 
spective on the data reveals that four distinct clusters 
are actually composed of mostly smaller barnacles. Al- 
ternatively, one can observe that the larger barnacles 
are distributed apparently more or less uniformly 
throughout the sampling area. 

To evaluate the potential significance of barnacle size 
and spatial pattern, these data were digitized using an 
ellipse as a model shape, and relative estimates were 
made of the barnacles' size (here, surface area). The 
histogram of barnacle size indicates that a large pro- 
portion of the total number are small barnacles, there 
is a nearly equal frequency of medium-sized individ- 
iials, and the largest barnacles comprise the smallest 
proportion of the total (Fig. 12). Barnacle size is, how- 
ever, less variable overall than the cell counts (coeffi- 
cients of variation, slm, are 0.78 for size vs. 1.27 for 
counts). As is readily seen in the raw data plot (Fig. 
1 l) ,  the distribution of various-sized barnacles does 
not appear to contain any strong, overall directional 
preference. 

The two renditions of the same acorn barnacle data 
underscore an important facet of ecological data anal- 
ysis: the way the data are presented or summarized 
largely determines the resulting interpretation that can 
be made of that data. When just the barnacle cell num- 
bers or densities are considered, four clusters are clearly 
evident (see Fig. 9), but there is no indication that the 
clusters are composed of primarily smaller, and pre- 

sumably younger, barnacles. That observation is ob- 
vious when an actual sketch of the barnacles is con- 
sidered (see Fig. 11). To the ecologist seeking an 
explanation for the spatial patterns of acorn barnacles, 
these age-size differences can be critical. 

When examining the spatial relations of ecological 
variables, other important considerations are the size, 
shape, and orientation of samples. In geostatistics these 
sample features are known as the "support" of the data. 
Support plays a major role in determining the kinds of 
statistical inferences that can be made toward under- 
standing the phenomena of interest. For example, con- 
sider some summary statistics for the barnacles when 
the same sampling area is redefined as a 5 x 5, 15 x 
15, 20 x 20, or a 25 x 25 grid of cells (Table 1). As 
the subareas over which the data are averaged decrease, 
the mean and variance also decrease, while skewness 
increases. As will be seen below (see The tools of geo- 
statistics applied. . . : The multi-scaled spatial arrange- 
ment of B. balanoides . . . : The spatial dependence. . .), 
when geostatistical procedures are implemented to in- 
vestigate the barnacle spatial patterns considering their 
size, diagnosis of spatial dependence is itself heavily 
dependent on the data support. 

While the raw data posting of barnacles is an explicit 
visual description, often it is important to know some- 
thing of how variable a region is in relation to another 
and what the mean pattern or trends are. "Moving- 
window" statistics help to provide this additional in- 
formation. As the name implies, summary statistics 
are computed for successive and possibly overlapping 
subregions throughout the sampling space. 

Changes in window mean and variance as a function 
of location provide information about the patterns of 
local variability and the average size of the barnacles 
(Fig. 13). Notice how, overall, the cell means and vari- 
ances tend to track one another. This tendency for the 
local means to be proportional to the local variances 

0 c 3  0 25 0.5c 3 .75  

FIG. 1 1. Plot showing the relative size and location of the 
surface areas occupied by Kooijman's ( 1  976) 166 acorn bar- 
nacles (after Kooijman 1979). 
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FIG. 12. Frequency histogram and some summary statis- 
tics for the estimated surface ares occupied by the individual 
acorn barnacles (data from Kooijman 1979). 

can be appreciated quickly when the cell standard de- 
viations are plotted as a function of their means (Fig. 
14). In geostatistics, when the local means and standard 
deviations share a predictable relationship, the data 
are said to contain a “proportional effect.” Linear pro- 
portional effects, like the one depicted in Fig. 14, are 
common in lognormally distributed data (Isaaks and 
Srivastava 1989). As will be seen below (The  tools of 
geostatistics applied . . . : The multi-scaled spatial ar- 
rangement of B. balanoides . . . : The spatial depen- 
dence . . .), the presence of a proportional effect influ- 
ences substantially the interpretations that can be made 
using a spatial dependence tool like the variogram. 

Data set 3: small-scale genetic 
variability of house mice, Mus musculus, 

in a Texas chicken barn 
Ecologists frequently study phenomena that can only 

be characterized or are best described using names or 
nominal variables rather than numerical measures. For 

instance, consider the distribution of genotypes in a 
population; one can speak of the proportion of indi- 
viduals in the population that contain a certain ge- 
notype, but normally there is no intrinsically mean- 
ingful continuous variable that can be associated with 
the presence of one genotype or another. One useful 
example is Selander’s (1 970) description of small-scale 
genetic variability of the house mouse, Mus musculus. 
Although genetic theory is concerned usually with ge- 
netic differences at the scale of continents, Selander 
showed distinct genetic variability at the scale of a few 
metres. 

Selander laid out a square grid ( ~ 0 . 5  m spacing) of 

0 ? 2 3 4 5  
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FIG. 13. Moving-window statistics for estimates of the 
surface areas occupied by Kooijman’s (1 979) 166 barnacles, 
shown in Fig. 1 1, using the original support (a 10 x 10 array 
of cells each 7.5 cm on a side). The top number is the total 
number of barnacles, the middle number is the mean, and 
the bottom number is the variance of the estimated surface 
areas occupied by the barnacles in each cell. Blank cells con- 
tain 5 2  barnacles. 

TABLE 1. Summary statistics for Kooijman’s (1976, 1979) acorn barnacle counts after changing the data support (here, the 
resolution of the sampling scheme). Note that the actual area and the number of barnacles are the same; only the grid size 
changes. 

Number of cells 
_ _ _ _ _ _ _ _ _ ~  ~ 

Statistic 5 x 5  10 x 10 15 x 15 20 x 20 25 x 25 

Mean 6.64 1.66 0.74 0.42 0.27 
Variance 32.79 4.43 1.30 0.57 0.29 
Standard deviation 
Coefficient of variation 
Skewness 
Minimum 
Median 
Maximum 
Cell size fm) 

5.73 2.10 1.14 0.76 0.54 
0.86 1.27 1.54 1.82 2.05 
0.68 1.59 1.84 2.33 2.06 
1 0 0 0 0 
3.50 2 0 0 0 

19 9 5 5 3 

0.15 0.075 0.05 0.0375 0.03 
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' 2 -  gous (43.4% of total), and 163 homozygous slow mice 
(43.1% of total). 

Selander plotted the distribution of mouse genotypes 
and drew contours by hand corresponding to major 
genotype zones (Fig. 15 presents Selander's raw data 

1r:ercep: = 1 48 
S c z e  = 3 46 
5 = 3.57 

only). He explained the demonstrable heterogeneity as 
a result of mouse tribal behavior. Typically, one male 
dominates several females and several subordinate 
males. This social behavior, coupled with mouse ter- 
ritoriality and inbreeding, were suggested as mecha- 
nisms for the resulting small-scale genotype distribu- 
tion. 

A few years after this original study, Sokal and Oden 
(1 978a, b) analyzed these data using a nearest-neighbor 
autocorrelation technique. They investigated three 

I chess-like "moves" or combinations of directions, 
12 ' 5 rook's, bishop's, and queen's, for contiguous sampling 

sites. They found significant positive autocorrelation 
between contiguous pairs Of mice with the homozygous 
medium gene and a significant negative autocorrelation 
between mice containing the two homozygous geno- 
types. Although they concede that their analysis dis- 
plays no evidence for significant heterozygote-hetero- 
zygote pairings (i.e., pockets of homozygotes separated 
by heterozygotes), they suggest that such an arrange- 
ment might be expected theoretically. 

i -  

I " "  

1.,1 ec f I 

FIG. 14. Plot ofthe cell standard deviations vs. their means 
for the grid depicted in Fig, 13 showing evidence of a pro- 
portional effect. Note: only cells containing 2 3 barnacles are 
presented. Original data from Kooijman ( 1  979). 

mouse traps in a 57 x 15 array in a chicken barn at 
Austin, Texas. In one night's trapping, 378 house mice 
were captured, and each was then tested for a common 

6 -  
- 
- 

3 2  
- 
- 

0- 

mammalian blood enzyme, esterase-3. The mice ex- 
hibited one of three traits or genotypes corresponding 
to the particular genetic makeup of the individual: ho- 
mozygous medium, heterozygous, and homozygous 
slow (see Fig. 15). The designations "medium" and 
"slow" refer to the speed of the protein migration in 
the electrophoretic gel used to characterize the three 
different esterase-3 genotypes. In all, there were 51 
homozygous medium (1 3.5% of total), 164 heterozy- 
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Data set 4: adult northern corn rootworm, 
Diabrotica barberi, density and corn, 

Zea mays, root damage 
Our final data set is based on original field research 

by Jon Tollefson (personal communication) at Iowa 
State University concerning the interrelationship be- 
tween the northern corn rootworm and Zea mays plants. 
Rootworm larvae feed exclusively on corn roots and 
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FIG. 15. Diagram of locations of the three esterase-3 genotypes of captured Mus musculus individuals in a Texas chicken 

barn (after Selander 1970). 
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TABLE 2. Summary statistics for J. Tollefson’s (personal 
communication) corn rootworm data. (Diabrotrca barberi 
larvae feed on Zea mays roots.) 

Number of Number of Percentage of 
beetleslplant locations total sites 

0 13 
1 113 
2 48 
3 55 

2 4  43 
272 

4.8 
41.5 
17.7 
20.2 
15.8 

100.0 

can cause substantial economic loss (Chiang 1973). 
Surveying rootworm damage, however, requires that 
corn plants be extirpated, a labor-intensive, destructive 
procedure that also creates gaps in the crop canopy, 
which can hasten lodging. 

During the summer of 1988, Tollefson tested the 
unproven hypothesis that root damage is positively 
related to the density of recently matured beetles. Nine 
northwest Iowa counties were chosen randomly and, 
in all, 272 total corn fields were surveyed. At each 
sampling location the number of adult beetles and the 
severity of root damage were estimated. As a measure 
of rootworm density, an index was assigned to a lo- 
cation according to the number of beetles counted. A 
summary of beetle indices and their proportions is pro- 
vided in Table 2. 

Similarly, a root-rating index was assigned to each 
location based upon the extent and severity of root 
damage. Descriptions of the root indices and the sum- 
mary proportions are itemized in Table 3. 

A bivariate scatter plot of these two variables would 
not be very illuminating since both variables are in- 
dices, and thus there are only five possible values for 
the beetle rating and four for the root rating (one of 
which contains only one value). Given these circum- 
stances, more revealing statistics are “conditional” sta- 
tistics: histograms of beetle indices graphed for each 
root-index category (Fig. 16). Of the 50 sites having a 
root index of zero, 98% also have a beetle index of 
eiiher zero or one while only 2% score a beetle index 
of two. For the 190 sites having a root-rating index of 
one, 40.53% have a beetle rating of either zero or one, 
24.2 1% scored a two, and 25.26% scored either a three 

or four. At the 31 locations with a root index of two, 
none scored a beetle rating of zero or one, only 3.23% 
had a score of two, and the vast majority (96.77%) 
scored a three or four. Only one location manifested 
the largest root rating of three, but it also scored the 
largest beetle index of four. Apparently, there is a pos- 
itive relationship between the root and beetle indices. 

The conditional histograms depicted in Fig. 16 make 
explicit the tendency for locations to have positively 
correlated beetle and root indices. Some summary sta- 
tistics can mask this result. For instance, relating root 
rating to the beetle rating results in only a moderate 
0.63 Pearson correlation coefficient. But the Spearman 
rank correlation coefficient is a much stronger 0.89. 
One explanation for the incongruous Pearson and 
Spearman correlation coefficients is that the relation- 
ship between beetle numbers and the severity of root 
damage is nonlinear, yet it is monotonic. Another pos- 
sible reason for the discrepancy is that outliers (i.e., 
large values in one data set paired with small values 
in the other, or the converse) drastically reduces the 
point-to-point Pearson correlation between the two sets. 
This large-small or small-large data pairing is miti- 
gated once the data’s ranks are considered. 

THE TOOLS OF GEOSTATISTICS APPLIED TO 
ECOLOGICAL PHENOMENA 

Now that the four ecological data sets have been 
introduced and a flavor for their spatial relations has 
been provided by plots and univariate and bivariate 
statistical analyses, we are ready to analyze their spatial 
continuity with more-advanced tools. Although uni- 
variate and bivariate measures provide useful sum- 
maries, they do not describe all the spatial features of 
data. Features such as the locations of extreme values, 
trends, or degree of continuity can be of major im- 
portance in understanding the ecology of an organism, 
but they cannot be derived completely from the tools 
and techniques utilized thus far. 

Spatial continuity measures quantify the relation- 
ship between the value of a variable at one location 
and the value of the same variable or another one at 
other locations. The basic idea of spatial continuity is 
simple and self-evident: on average, the closer two 
sampling points are to each other, the more likely it is 
that their values will be similar. 

TABLE 3. Root indices and summary proportions for J. Tollefson’s (personal communication) corn rootworm data. (Dia- 
brotica barberi larvae feed on Zea mays roots.) 

Number of Percentage of Mean no. of 
locations total sites beetledplant Root index Root condition 

0 No damage 50 18.4 0.86 

2 Minor loss of root structure 31 11.4 3.71 
1 Visible feeding scars 190 69.8 2.02 

3 Major loss of root structure 1 0.4 4 
272 100.0 
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FIG. 16. Conditional histograms of adult Diabrotica barberi density indices for the four Zea mays root-rating categories 
(data from J. Tollefson, personal communication). 

There is a wide and flexible variety of spatial con- 
tinuity tools in geostatistics, among which the most 
useful are h-scatterplots, variograms, correlograms, and 
covariance measures. Using the four ecological data 
sets, we now explore how these tools quantify an or- 
ganism attribute or environmental variable’s spatial 
patterns. Additionally, we see how the patterns of the 
interaction between an attribute of an organism and 
some component of its environment can also be quan- 
tified and interpreted. 

h-scatterplots. -In geostatistics the bold letter h is 
generally taken to represent some separation vector in 
space, one that has a direction and distance to it. When 
temporal phenomena are the focus of interest, h refers 
to a time interval. Often, however, the lag distance 
may refer to a scalar distance, an average over all di- 
rections, in which case we will use “h” rather than “h.” 
One way to portray the degree of spatial continuity at 
some lag distance h is to compute an h-scatterplot. An 
h-scatterplot is simply a plot of the pairs of all data 
values separated by a common lag. 

Consider four h-scatterplots for Hengeveld’s sum- 
mer collection of the carabid beetle Pterostichus coe- 
rulescens (Fig. 17). Since the raw data are so strongly 
skewed, they were first uniform-rank transformed. A 
uniform-rank transform is performed easily by ranking 

the data in ascending order and then dividing each rank 
by the total sample size. This new variable, u(x), has 
the advantage that it is distributed in the interval [0, 
11, and each increment is constant. Consequently, in 
the resulting h-scattergram, neither the preponderating 
small values nor the small number of large ones are 
privileged visually. 

The four plots of Fig. 17 show all possible pairings 
of the 2 5 2  data separated by a lag of one, two, three, 
and four units, independently of direction, where each 
unit is the minimum sample spacing of 40 m. These 
plots depict all transformed values at all locations x, 
u(x), against all other values a distance h away, u(x + 
h). If two data separated by h are identical, then they 
would fall somewhere on the h-scatterplot’s 45” line. 
Since this is rarely the case, the plotted points instead 
define a scatter or “cloud” of points around the 45” 
line. Notice that the cloud of h = 1 scatterplot points 
is the narrowest of the four. With increasing distance 
the cloud becomes wider and more diffuse. This result 
is to be expected since the general idea of spatial con- 
tinuity is that proximate data are, on average, more 
similar than those that are farther apart. 

In the h-scatterplot for lag distance one, note how 
one point [i.e., u(x+h)  2: 0.731 falls quite far from the 
45” line when paired with smaller data. This means 
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FIG. 17.  Omnidirectional h-scattergrams for lags one through four of Hengeveld's ( 1  979) summer collection of Pterostichus 
coerulescens. Carabid density counts were first uniform rank-transformed to eliminate the bias of the strongly skewed raw 
data. 

that of all the h = 1 comparisons, this datum is most 
mlike its contiguous neighbors. This point corre- 
sponds to a location where 465 beetles were captured, 
but its eight contiguous neighboring data are 16, 80, 
100, 264, 291, 297, 332, and 345 beetles. One may 
suspect, therefore, that this value is an outlier, a value 
so large as to be distinguished rightfully from its neigh- 
bors. If there are sound physical or ecological reasons 
(e.g., the number of carabid beetles at that location was 
incorrectly counted, an unusually large concentration 
of the beetle's favorite food occurred at this location, 
etc.), then the researcher is justified in removing the 
datum so as not to let this one uncharacteristic value 
influence the statistical interpretations that can be made 
of the carabid beetle's spatial continuity. Alternatively, 
thanks to the h-scatterplot, we now know that the 465 
datum is more unlike its closest data than any other 

datum. Determining the reasons for this large concen- 
tration could be a valuable aid toward understanding 
the ecology of P. coerulescens. 

It is important to recognize that although the count 
of 465 is most unlike its neighboring values at h = 1, 
and hence might be an outlier, at other lags it may be 
neither the most dissimilar nor an outlier. At h = 4, 
for instance, other data plot as far or farther from the 
45" line. Therefore, whether or not a value is an outlier 
cannot be determined with reference to only one spe- 
cific lag. 

Besides their ability to indicate possible outliers or 
misrecorded values, h-scatterplots may also signal the 
presence of distinct populations. Different populations 
with different spatial continuities will usually plot as 
distinct clouds or scatters of points. Such distinct modes 
may or may not appear on the raw histogram. If dis- 
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TABLE 4. Summary statistics for Pterostichus coerulescens’ 
four h-scatterplots shown in Fig. 17. 

Lag 
covanance Moment 

(no. of Correlation of inertia 
h beetles)2 coefficient (no./cell)2 

1 59 757 0.862 9817 
2 52 307 0.796 15 175 
3 46 647 0.728 21 083 
4 40 466 0.656 27 413 

6ooc 1 

I @’ 

Crete populations are suspected, the researcher should, 
data permitting, separate the distinct populations and 
analyze them separately for spatial continuity. Other- 
wise, an analysis on the mixture of populations may 
provide a misleading (i.e., merely average) portrait of 
the extant spatial relations. 

Another advantage of h-scatterplots is that their 
asymmetry about the 45” line can signal trends or dif- 
ferences in the local means and variance. In the graphs 
in Fig. 17, for example, note how the small u(x) values 
plot disproportionately more often on the u(x + h) 
side of the 45” line. This asymmetry corresponds to 
comparisons between locations with small densities 
and those having larger densities of beetles. We have 
already seen that P. coerulescens’ density reflects a strong 
trend (see Fig. 4), so this feature is reflected in the 
h-scatterplot. 

h-scatterplots are useful tools, but they fail to sum- 
marize precisely and succinctly spatial continuity. The 
degree of scatter or the size of the cloud in an h-scat- 
terplot can be summarized using the covariance (Eq. 
1) or the correlation coefficient (Eq. 2) measures. The 
first two columns of Table 4 itemize the covariance 
and correlation coefficients for each of the four lag 
distances for P. coerulescens. Both the covariance and 
the degree of correlation decrease with increasing lag 
distance, and thus, as suspected, the data are more 
dissimilar the farther apart they are. 

Another measure of spatial continuity, the “vario- 
gram,” is a traditional geostatistical tool. Its formu- 
lation is related to both spatial covariance and corre- 
lation functions, and it is also an effective summary of 
an h-scatterplot. Before delving into these relations, 
however, let us first explore an intuitive description of 
the variogram. 

The variogram: a bivariate, statistical model. -Con- 
sider again the carabid beetle distribution that shows 
a clear pattern (Fig. 1) and the same data rearranged 
in a random pattern (Fig. 2). The variogram is one 
method for distinguishing the obvious differences be- 
tween these two spatial distributions. Like the spatial 
covariance and correlation functions, the variogram 
models the average degree of similarity between the 
values as a function of their separation distance. 

Journel (1 984b) describes an insightful method for 
understanding the variogram. His approach recognizes 
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FIG. 18. Omnidirectional variograms for the patterned 
spatial distribution shown as a perspective plot in Fig. 1 and 
the random spatial distribution shown similarly in Fig. 2. 
i. ( h )  is the estimated variogram value; the horizontal dashed 
line depicts the overall sample variance of both data sets. 
Original data from Hengeveld (1979); the grid spacing in the 
original data collection was 4 0  m. 

the variogram as an effective summary of an h-scat- 
terplot: each variogram value summarizes one h-scat- 
tergram. Half the average squared distance between all 
h-scatterplot points and the 45” line can be seen as the 
moment of inertia of the points about that line. That 
is, if x, and y, are the coordinates of one of the 
h-scatterplot points, then the moment of inertia for all 
N points is defined: 

. \  
I 

Moment of inertia = - (x, - yJ2.  (4)  
2N !=, 

The values for the moments of inertia for the four 
P. coerulescens h-scatterplots presented in Fig. 17 are 
itemized in Table 4 (third column), and are the var- 
iogram values for all directional combinations of pairs 
of points separated by exactly 1 ,  2, 3, and 4 lags. 

A variogram function summarizes all h-scattergrams 
for all possible pairings of data: 

where +(h) is the estimated semivariance value for lag 
h and N(h) is the number of pairs of points separated 
by h. Put another way, this new expression for the 
variance between a pair of points is the half- or semi- 
variance, or as it is simply referred to in the geosta- 
tistical literature: the “variogram.” Variograms can be 
computed as either an average over all directions, in 
which case the lag measure is scalar, or specific to a 
particular direction, in which case the lag measure is 
a vector. 

Variograms computed from the data displayed in 
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Fig. 1 and Fig. 2 for all possible pairs of points over 
the sampling space are distinctly different (Fig. 18). For 
the random data all values are essentially the same, 
and thus the variogram appears nearly horizontal. The 
patterned data, on the other hand, produce a variogram 
that has small values for short lags, then increases with 
increasing distance, but levels off and even decreases 
after about lag nine. These features reflect the degree 
of spatial variability or, conversely, continuity in the 
data. Constant variogram values mean that, on aver- 
age, the variance between values does not change with 
distance. Small variogram values at short lags corre- 
spond to data that are closer together and more alike 
or more spatially continuous. Conversely, large var- 
iogram values reflect data that are farther apart and 
more dissimilar or spatially discontinuous. 

Notice that the random pattern’s vanogram remains 
near the sample variance of 3369. A plot of these raw 
data demonstrated no detectable spatial continuity (see 
Fig. 2 ) ,  and this characteristic is reflected in the fairly 
constant variogram, one nearly equivalent to the over- 
all sample variance. In this instance the sample vari- 
ance suffices to summarize the spatial continuity at all 
lags. In contrast, the patterned data set’s variogram 
values summarize the degree of spatial variability ev- 
ident at each particular lag distance. 

It should be pointed out that a variogram is a special 
type of model. Although a model is typically defined 
as a deterministic paradigm that explains or predicts, 
a variogram is a statistical model. It summarizes the 
samples’ two-point or bivariate relations, i.e., the av- 
erage squared difference between samples aligned in a 
particular direction and separated by some common 
lag. This observed or experimental variogram is a de- 
scriptive statistical model for the particular realization 
of the phenomenon under study. Because our sampling 
is limited, we assume, therefore, that our experimental 
variogram is representative of the true variogram had 
our sampling been exhaustive. 

We have said that the variogram is a statistical model 
of spatial dependence. Traditionally, there are two types 
of spatial dependence: “structural” and “stochastic.” 
Structural spatial dependence refers to large-scale data 
trends and involves jointly several data locations. Sto- 
chastic spatial dependence refers to small scale corre- 
lation structures usually at distances smaller than the 
separation distance between two data locations. Al- 
though the distinction between the two types is scale 
dependent, the variogram models structural spatial de- 
pendence. 

Credit is usually given to Matheron (1963, 1965), 
Journel and Huijbregts (1 978), and David (1 977) among 
many others in the field of mining geology for dem- 
onstrating the variogram’s practical use. To be sure, 
their works have advanced the use of the variogram 
as a spatial-continuity measure. Nevertheless, some 
years before mining geologists took note of the advan- 
tages of the variogram, biomathematicians Matern 

(1947) and Jowett ( 1  955) used a “serial variation func- 
tion” identical to the variogram. Their application in- 
volved quantification of local or short-distance vs. long- 
distance variation and its effect on the proper design 
of sampling regimes. Matern (1 947) applied spatial cor- 
relation measures to the distribution of Swedish for- 
ests. Whittle’s (1 954, 1956, 1963) works, especially his 
1963 text, foreshadowed much of the geostatistics that 
was later developed by Matheron and his associates in 
Fontainebleau, France. Some of the same can be said 
for Wold (1938), Kolmogorov (1941), Wiener (1949), 
Yaglom (1 957), Goldberger (1 962), and Gandin (1 963). 
But even these works were not among the oldest. Ma- 
tern (1 960) relates that the Swedish forester Langsaeter 
used what is essentially the variogram to express vari- 
ation in forest surveys as early as 1926. 

Now that the idea of a variogram and a bit of its 
biological heritage has been developed, let us re-ex- 
amine this old tool using the four ecological data sets. 
In addition, we also explore some other related, but 
often more revealing and dependable, spatial-conti- 
nuity tools. Most of the spatial-continuity tools will be 
presented using Hengeveld’s (1 979) carabid beetle data. 
These data are best suited to introduce the tools be- 
cause the spatial patterns of the carabids are readily 
apparent in the raw data plots (Fig. 4), so interpretation 
using these new tools is more quickly grasped. This 
will be a distinct advantage later when the spatial pat- 
terns of other organisms are investigated-organisms 
whose spatial patterns are not as visually obvious. 

The spatial and temporal interrelationships of 
Dyschirius globosus and Pterostichus coerulescens 
Variography: the calculation and interpretation of 

variograms. -In Fig. 18 we saw how a variogram dis- 
tinguishes between a patterned and a randomly dis- 
tributed carabid beetle’s spatial distributions. Those 
quantifications of pattern were computed by consid- 
ering all possible pairs of the 252 available data on D. 
globosus. In geostatistics such variograms are often 
called “omnidirectional” variograms since they are an 
average over all pairs of data no matter their orien- 
tation or direction from each other. We may inquire 
whether spatial continuity changes with direction or 
location over the sampling space. After all, the plots 
of both beetles’ distributions (Fig. 4) reveal different 
patterns in different regions and changes with direction. 
How can the variogram account for such obvious dif- 
ferences? 

Variograms can be computed for subregions of the 
sampling grid so long as there are a sufficient number 
of data. A geostatistical “rule of thumb” is that each 
lag class must be represented by at least 30-50 pairs 
of points (Journel and Huijbregts 1978). However, the 
greater the number of pairs of points, the greater the 
statistical reliability in each distance class. 

Directional variograms. - Variograms may also be 
calculated for specific directions. Assume that what we 
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FIG. 19. Standardized directional variograms, with 22.5" 
increments and ? 1 1.25" tolerances. for the summer collection 
of Dyschirius globosus. Original data from Hengeveld (1 979). 

have taken to be the X axis or long side of the carabid 
sampling space corresponds to the 0" direction (a stan- 
dard to which we henceforth adhere). Since the carabid 
beetle data were collected on a regular square grid, 
computing pure 0" and 90" variograms is easy: only 
pairs of points that fall on the same row or column 
need be considered, and then all rows or columns are 
averaged. Likewise, pure 45"- and 135"-directional var- 
iograms could be computed by pairing data points that 
lie precisely in those directions. 

This scheme works well for data sampled on regular, 
square grids, but it would be difficult, and perhaps 
impossible, to implement precisely with irregularly 
spaced data. Moreover, even if the data were on a 
regular, square grid, limiting the pairing of data values 
to only those that align exactly along the same direction 
is unnecessarily restrictive. For example, say a value 
at location (0 ,  0) i s  paired with the one at location (1 0, 
1). These two points are separated by a distance of only 
10.05 which is very close to 10. However, they do not 
bclong to either the same row or column, nor do they 
fall along a common 45" or 135" diagonal. Still, the 
angle separating them is only 5.7". Clearly, if we com- 
pare values that fall within a specific tolerance around 
the required direction and distance, then points like 
(0 ,  0) and (10, 1) can be paired legitimately without a 
loss of variogram specificity. In this way we may des- 
ignate the spatial dependence for any combination of 
direction and tolerance for any sampling regime. 

Directional variograms for D. globosus, computed 
in 22.5" increments with a k 11.25" (non-overlapping) 
tolerance, reveal small differences in spatial continuity 
with direction (Fig. 19). Before we consider their subtle 
differences, however, two features of these plots need 
to be explained: (1) some directions have fewer points 
plotted than others, and (2) all of the variograms' val- 

ues are standardized by dividing each by the total sam- 
ple variance. 

Like the 30-50 pairs minimum rule of thumb, only 
half the total distance measured in any direction over 
the sampling space may be represented legitimately in 
a variogram. This restriction assures that all lag classes 
are truly representative of the sampling space, because 
lags larger than half the maximum distance compare 
only the edge points of a sampling region. Thus, the 
O", 22.5", and 157.5" variograms contain values out to 
"lag 10 while the 67.5", 90°, and 112.5" variograms 
contain values out to only -lag six. Accordingly, sub- 
region variograms for the carabid data would not be 
very meaningful since they would contain an insuffi- 
cient number of points. 

Standardized variograms. -Since a variogram is a 
plot of half the average squared difference between data 
separated by about the same distance and oriented in 
about the same direction, different data will have dif- 
ferent variograms. If the overall variability in values 
is large, then the variogram values will also be large. 
It would be useful to compare the spatial variability 
between the summer collections of P. coerulescens and 
D. globosus, but the sample variance for the P. coe- 
rulescens is nearly 22 times larger than that for D. 
globosus. Consequently, their variograms will be dif- 
ficult to compare. One way to standardize their var- 
iograms is to divide each variogram value by the over- 
all sample variance. This standardizes each plot so that 
a unit variogram value is equivalent to the sample 
variance. Standardizing their variograms allows mean- 
ingful spatial-dependence comparisons to be made be- 
tween data with disparate measurement units and/or 
levels of spatial variability. 

Returning to Fig. 19, we can see that the slopes of 
the variograms for directions 45", 67.5", and 90" are 
less than for the other directions. This means that the 
rate of change in the density of D. globosus in these 
directions is smaller than for the other directions. This 
interpretation can be observed readily in the exhaus- 
tive map ofthe species (see Fig. 4): the isarithms extend 
farther into the sample space in the 45" to 90" direc- 
tions. Conversely, this beetle's density reflects a faster 
rate of change in the other directions, a feature which 
corresponds to steeper slopes in the other directional 
variograms. Differences in spatial continuity with di- 
rection is known as "anisotropy," while similar spatial 
continuity with direction is known as "isotropy." 

The summer collection of P. coerulescens manifests 
distinct and dramatic anisotropy (Fig. 20). Most of the 
directional variograms are linear, but some, like the 
135" and 157.5" directions, show a definite parabolic 
behavior. The rate of change in beetle density (i.e, the 
spatial continuity) is much greater in these latter di- 
rections than for the directions that appear linear. No- 
tice that although the total number and variance of P. 
coerulescens beetles captured far exceeds that for D. 
globosus (see Fig. 6 ) ,  and that they predominate in 
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different regions of the sampling space, a comparison 
of their directional variograms shows that the rate of 
change in spatial continuity between the two carabid 
beetles is, aside from a few directions, comparable with 
direction. That is, excepting, for example, the 0" and 
90" directions, those directions demonstrating the 
greatest and smallest change in spatial continuity for 
one beetle also correspond to those for the other. This 
could signal an environmental or other influence that 
is shaping similarly the spatial patterns of these two 
species, species that are quite dissimilar morphologi- 
cally (Thiele 1977). 

Once scaled by their respective sample variances, 
the directional variograms for P. coerulescens during 
the fall (Fig. 21) are nearly identical to those of the 
summer (Fig. 20). Again, the variograms are strongly 
anisotropic, and they are either linear or parabolic. A 
combination of such linear and parabolic variograms 
indicates that the data display a directional trend. This 
feature is evident in the isarithmic plots (see Fig. 4). 

The 45" to 112.5" variograms for D. globosus (Fig. 
19) appear linear due to the limited number of signif- 
icant lag classes in those directions. We would expect 
that, if the sampling space were large enough, then the 
45" to 1 12.5" variograms would also begin to level off 
as they do in the other directions because the borders 
ofthe beetle concentration would be defined. The trend 
exhibited in the P. coerulescens data (Figs. 20 and 2 1) 
is similar. These data show a trend over the whole 
sampling space. "Trend" can be thought of as a pattern 
whose dimensions are larger than the sampling space 
and/or the significant lag classes. Because of the trends, 
the local mean and variance will be different with lo- 
cation and direction. However, the spatial continuity 
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FIG. 20. Standardized directional variograms, with 22.5" 
increments and i 1 1.25" tolerances, for the summer collection 
of Pterostrchus coerulescens Onginal data from Hengeveld 
(1  979). 
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FIG. 21. Standardized directional variograms, with 22.5" 
increments and i 1 1.25" tolerances, for the fall collection of 
Pterostichus coerulescens. Original data from Hengeveld (1 979). 

we have been attempting to model statistically with 
the variogram compares only the average square dif- 
ference between locations; it does not account explicitly 
for local mean and variance changes. What would the 
carabid beetles' spatial continuity be like if the local 
mean and variance changes could be eliminated and 
any underlying spatial continuity be revealed? 

Spatial covariance and correlograms. -Tools that fil- 
ter local mean and variance changes and yet specify 
the strength of the relationship between two variables 
have already been introduced; covariance (see Eq. 1) 
accounts for the global mean and the correlation coef- 
ficient (see Eq. 2) accounts for both the global mean 
and variance. In addition to comparing two different 
data sets as a whole, a covariance and a correlation 
coefficient can be computed for each lag, as was done 
above for the P. coerulescens h-scatterplots (see Fig. 
17). Such a lag covariance, C(h), is estimated: 

+ h) - m - J } ,  ( 6 )  

where z(x,) and z(x, + h) are two data points separated 
by the vector distance h. Datum z(x,) is the tail and 
z(x, + h) is the head of the vector, N(h) are the total 
number of data pairs separated by lag h, and m-h and 
m-h are the mean of the points that correspond to the 
tail and head of the vector, respectively. Isaaks and 
Srivastava (1 988) describe the form of this spatial co- 
variance as the "non-ergodic covariance." Without get- 
ting into the rather involved and possibly statistically 
overwhelming formal definition of the term "ergodici- 
ty" (see Olea 1990), the traditional ergodic covariance 
considers m+h = m-h = m. The non-ergodic covariance 
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FIG. 22. Standardized directional non-ergodic covari- 
ances expressed in variogram form. with 22.5" increments 
and i 1 1.25" tolerances, for the summer collection of Dys- 
chirius globosus. Original data from Hengeveld (1979). 

accounts for any differences between the head and tail 
means. 

The lag correlation, fi(h), is similarly estimated: 

S-hS+h 

(7) 

where sxh and s - ~  are the standard deviations of the 
tail values and head values of the vector, respectively. 
These "spatial" covariance and correlation coefficient 
values can then be plotted as a function of lag distance 
like a variogram. A plot of lag correlation-coefficient 
values vs. distance is often called a "correlogram." 

The true variogram, covariance, and correlogram are 
all related. If the population mean and variance are 
constant over the sampling space ( F - ~  = p+h = F and 
c2_h = c2-h = 02,  i.e., there is no trend) then: 

y(h) = o2 - C(h), 

p(h) = C(h)/c2, and 

1 - p(h) = y(h)/02. (8) 

Typically, when lag covariance is plotted as a function 
of distance, large values occur at small lag distances 
and smaller (possibly even negative) values at larger 
lags. The correlogram can vary only from + 1 to - 1, 
depending upon whether the correlation between lo- 
cations is positive or negative. The relations stated in 
Eqs. 8 permit us to re-express the covariance and cor- 

relograms in variogram form and to standardize the 
covariance so that the sample variance is equivalent 
to one. When the lag covariance values are subtracted 
from the sample variance, the resulting plot is equiv- 
alent, though not identical, to the variogram. Dividing 
these values again by the overall sample variance stan- 
dardizes the covariance. When the correlogram is sub- 
tracted from 1, then the resulting plot is in the form 
of a standardized variogram. For consistency, spatial 
covariances and correlograms will be expressed in var- 
iogram form. 

The standardized directional covariance (Fig. 22) and 
the directional correlogram functions (Fig. 23) for D. 
globosus exhibit different spatial features from those 
of the variograms in Fig. 19. Like the variograms, the 
O", 135", and 157.5" covariances and correlograms level 
off, but at a smaller standardized value of z 1.3 or 1.4 
for the covariances and % 1.2 or 1.3 for the correlo- 
grams. Incorporating the effect ofchanging the lag means 
and variances has essentially rescaled the variograms 
downward to approximate more closely the overall 
sample variance of ~ 3 3 6 9  (beetles)2. Also, the lag dis- 
tance (in 40-m increments) at which the directional 
plots level off has fallen from ~9 in the variograms, 
to ~8 in the covariance plots, and finally to ~7 in the 
correlogram plots. Why have these changes occurred 
and of what significance are they in interpreting the 
spatial dependence or continuity of the carabid beetle? 

The sill and range. -The variogram, covariance, or 
correlogram value at which the plotted points level off 
is known as the "sill." Covariances and correlograms 
that are not expressed in variogram form have a sill 
of zero. The lag distance at which the variogram, co- 
variance, or correlogram levels off is known as the 
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FIG. 23. Directional non-ergodic correlograms expressed 
in variogram form, with 22.5" increments and i 11.25" tol- 
erances, for the summer collection of Dyschirius globosus. 
Original data from Hengeveld (1 979). 
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FIG. 24 .  Standardized directional non-ergodic covari- 
ances expressed in variogram form, with 22.5" increments 
and i 1 1.25" tolerances, for the summer collection of Pterosti- 
chus coerulescens. Original data from Hengeveld ( 1  979). 

"range." The range defines the average distance within 
which the samples remain correlated spatially. Spatial 
continuity measures like the non-ergodic covariance 
and correlogram filter the lag means and variances. The 
variogram does not filter out the large-scale variability 
of the lag means or variances and, therefore, might 
overestimate the local correlation range of beetle den- 
sity. Once differences in local mean and variance are 
accounted for, the beetle's density is found to remain 
correlated over a shorter distance of -7 lags. 

Let us summarize the interpretations of the D. glo- 
bosus variograms, covariances, and correlograms. Var- 
iograms provide a quantification of the degree of spatial 
continuity with direction that includes any pattern due 
to changes in local mean and variance. Because these 
local effects are present in the D. globosus distribution, 
most of the directional variograms model the degree 
of spatial continuity to be greater than the overall sam- 
ple variability. In addition, for those directions with 
enough significant lag classes, the range of influence is 
-9 lags or 360 m. The non-ergodic covariances also 
model the lag-to-lag changes, but they remove the ef- 
fects of changing means within the sampling space. 
After these influences are removed, the sills are lowered 
and the ranges shortened. This corresponds to a beetle 
density with less lag-to-lag variability and shorter cor- 
relation spaces. Finally, non-ergodic correlograms are 
covariance functions that take account of and remove 
the effects of changing variances over the sampling 
space. Once these influences are removed from the D. 
globosus data, the models' lag-to-lag variations are sim- 
ilar to the overall sample variance, and the ranges are 
shortened even more than the covariance models. 
Which model is correct? They all are; each provides a 
slightly different perspective on the two evident sources 

of spatial pattern: lag-to-lag variability and local mean 
and variance changes. 

The differences between P. coerulescens' variograms 
and non-ergodic covariances are more striking and re- 
vealing. Unlike the directionally distinct (i.e., aniso- 
tropic) variograms for the summer collection (see Fig. 
20), the non-ergodic covariances (Fig. 24) are reason- 
ably isotropic because they share a common slope. 
Plots of the head and tail means as a function of lag 
distance (Figs. 25 and 26, respectively) show how much 
they differ from the overall sample mean with direc- 
tion. Notice that the head and tail means for any di- 
rection are roughly flipped images ofeach other-flipped 
(rotated) that is, around the overall sample mean. Thus, 
the rate and proportion of change in mean for any one 
direction is about the same as that for the opposite (i.e., 
+ 1 80') direction. Once these local means are taken 
into account, then the directional lag-to-lag spatial con- 
tinuity of P. coerulescens is quite isotropic. 

Plots of the head and tail lag variances (Figs. 27 and 
28) are not as distinct directionally as are the lag means. 
The head and tail variances are not flipped images like 
the lag means. Except for the 45" direction, the rate 
and amount of local variance change is different for 
any one direction from that in its opposite direction. 
Recall that the 45" direction corresponds to the direc- 
tion that is perpendicular to the direction of the linear 
trend (see the isarithmic plot of the raw data in Fig. 
4). This direction, therefore, displays minimum change 
in numbers and local means. When all of the regional 
mean and variance changes are filtered out, the cor- 
relograms (Fig. 29) still exhibit the anisotropy and large- 
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FIG. 25 .  Standardized directional vector head (+ h) means 
with 22.5"increments and * 11.25" tolerances, for the summer 
collection of Pterostichus coerulescens. Original data from 
Hengeveld ( 1  979). 
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FIG. 26. Standardized directional vector tail (-h) means, 
with 22.5"increments and * 1 1.25" tolerances, for the summer 
collection of Pterostichus coerulescens. Original data from 
Hengeveld (1  979). 

scale trend in the 135" direction as shown in the var- 
iograms of Fig. 20. 

T h e  nugget. -A new feature, one with potential eco- 
logical implications, is evident in the covariance plots 
and correlograms (and to a lesser degree in the vario- 
grams as well) of P. coerulescens (Figs. 20, 24, and 29). 
Notice that if the plots are extrapolated to lag zero, 
they appear to intercept the ordinate at a value > O .  
Variograms and reverse-plot covariances and correl- 
ograms are exactly zero at lag zero because at zero lag 
all three tools compare the degree of variability at a 
location with itself. The variogram, covariance, or cor- 
relogram value at which the model appears to intercept 
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FIG. 27. Standardized directional vector head (+h)  vari- 
ances, with 22.5" increments and i 11.25" tolerances, for the 
summer collection of Pterostichus coerulescens. Original data 
from Hengeveld (1979). 
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FIG. 28. Standardized directional vector tail (-h) vari- 
ances, with 22.5" increments and i 11.25" tolerances, for the 
summer collection of Pterostichus coerulescens. Original data 
from Hengeveld (1979). 

the ordinate is known in geostatistics as the "nugget." 
A nugget is the apparent discontinuity at h = 0. The 
term was coined by mining engineers who typically 
would find gold nuggets apart from the more spatially 
continuous seams of ore. The nugget represents all un- 
accounted-for spatial variability at distances smaller 
than the smallest sampling distance. 

There are two, often co-occurring, reasons for nug- 
gets: (1) there is spatial variability below the minimum 
lag distance, and hence it cannot be modeled with the 
present sampling scheme, and ( 2 )  experimental error 
has added variance to the calculations. This latter source 
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FIG. 29. Directional non-ergodic correlograms expressed 
in variogram form, with 22.5" increments and i 11.25" tol- 
erances, for the summer collection of Pterostichus coerules- 
cens. Original data from Hengeveld (1979). 
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Standardized directional non-ergodic covari- 
ances expressed in variogram form, with 22.5" increments 
and k 11.25" tolerances, for the fall collection of Pterostichus 
coerulescens. Original data from Hengeveld ( 1  979). 

is sometimes termed "the human nugget." Nuggets are 
important because the difference between a model's sill 
and the nugget represents the proportion of the total 
variance that can be modeled as spatial dependence 
from the available sampling grid. However, as was 
demonstrated in the above examples, this result as- 
sumes that the variogram, covariance, or correlogram 
exhibits a leveling offcorresponding to the sample vari- 
ance (i.e., the local means and variances do not change 
over the sampling space). 

Returning to P. coerulescens' spatial patterns, the 
spatial variability of this carabid during the fall reflects 
different features from its summer distribution (see Fig. 
4). Like its summertime counterpart (Fig. 23), the fall 
non-ergodic covariance plots display isotropic behav- 
ior (Fig. 30). With the removal of the lag variances, 
however, the carabid presents directionally different 
spatial continuities (Fig. 3 1). The 0" and 22.5" correlo- 
grams display different levels (sills) of spatial continuity 
and, unlike the other directions, they reflect ranges of 
around lag six or seven. Neither of these features are 
evident in the summer correlograms (Fig. 29), but the 
ranges are identical to those of the summer D. globosus 
data of Fig. 23. Similar ranges could be a coincidence, 
or it could signal an environmental or behavioral in- 
fluence that is shaping similarly the beetle patterns. 

Hengeveld (1979) offers the suggestion that during 
the fall, the callow or young beetles concentrate tem- 
porarily in reproductive areas. The non-ergodic cor- 
relograms suggest that these concentrations remain 
correlated in the 0" and 22.5" directions up to a distance 
of -6  lags of 240 m (see Fig. 3 1). Correlation distances 
in the other directions are presumably much larger, 
since the correlograms do not manifest ranges. Unlike 
the summer period (Fig. 29) when the largest variability 

in spatial continuity was in the 135" and 157.5" direc- 
tions, the fall period's greatest variability in spatial 
dependence occurs in the 45" to 135" directions (Fig. 
3 1). This is reminiscent of an outmigration following 
mating, as Hengeveld conjectures, but it suggests more 
of a radially expanding migration oriented approxi- 
mately in the 90" and 270" directions. Clearly, all such 
conjectures should be corroborated using repeated 
measurements over several years. 

The above results point out the importance of com- 
puting simultaneously variograms, covariances, and 
correlograms instead of relying on just one measure. 
The variogram is often an erratic and unreliable char- 
acterization of spatial continuity, especially when the 
data are highly skewed or when the data are clustered 
(Srivastava and Parker 1989). The carabid beetle data 
exemplify well the first condition, and the ecological 
data that follow embody the latter condition. When an 
assumption of constant means and variances through- 
out the sampling space is tenable (a condition referred 
as as "strict stationarity"), then the variogram is ap- 
propriate. Since these conditions are commonly not 
met, a prudent procedure is to compute the variogram 
along with the covariance and the correlogram. Com- 
parison of the results will then reveal both the lag-to- 
lag spatial variability as well as any regional patterns 
due to local mean and variance changes. 

Two-dimensional models of spatial continuity.- 
Computation and comparison of numerous directional 
variograms, covariances, and correlograms can be te- 
dious. Fortunately, through the use of two-dimensional 
or planimetric variograms, covariances and correlo- 
grams, all directions can be represented simultaneously 
in one graphic. In order to compute such plots, it is 
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FIG. 3 1. Directional non-ergodic correlograms expressed 
in variogram form, with 22.5" increments and * 11.25" tol- 
erances, for the fall collection of Pterostichus coerulescens. 
Original data from Hengeveld (1979). 
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, , Two-dimensional covariances and correlograms can 
also be computed for the summer distribution of P. 
coerulescens (see Fig. 33). Plots of the individual di- 
rectional covariances (see Fig. 24) gave the appearance 
of isotropy, yet the two-dimensional rendition displays 
anisotropic behavior. It should be recalled that the 
directional covariances were computed with a i 1 1.25" 
tolerance, so some of the anisotropy is mitigated. At 
h = 1-2 there is great continuity in the 90" direction, 
yet by h 2 3 the greatest continuity is in the 22.5" 
direction. The exhaustive correlogram does not dem- 
onstrate this difference because the effect of local vari- 

Thus far our geostatistical analysis of the carabid 
beetle data has relied on tools that quantify the spatial 
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. _  0 continuity inherent in an individual species. When we 
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3 correlograms between the two species and between 
sampling times, similarities and differences were ap- 
parent, but we had no specific measure of the strength 

the task, tools that are merely extensions of the now 
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of the similarity or difference. Tools are available for 

familiar variogram, covariance, and correlogram. 
Modeling the spatial relationship between two vari- 

- 1 :  -5 " 5 I c ables. -To model statistically the spatial covariation 
between D. globosus and P. coerulescens or between P. 
coerulescens at different sampling times, we can use a 
cross-variogram, cross-covariance, and cross-correlo- 
gram, Let zi(x) represent the number of D, globosus 
and zg(x) the number of p ,  coerulescens at location x, 
One way to describe the spatial continuity between the 
two species for any lag distance is by calculating the 
estimated cross-variogram, +,,(h),which is defined as: 

? 
- D  

h in  C0-183O Direc t lo?  

FIG. 32. Graph depicting the directional orientation in an 
exhaustive vanogram plot and the exhaustive variogram Of 
the summer collection of Ptcrostichus coerulescens. Original 
data from Hengeveld ( 1  979); the grid spacing in the original 
data collection was 40 m. 

preferable that the samples be distributed on or ap- 
proximated to a square grid. 

In Fig. 32 all significant lags for all standardized 
directional variograms are plotted topographically for 
the summer collection of P. coerulescens. The X axis 
in this graph plots the coordinate of vector h from - 10 
to 10 in the 0" or 180" direction. Similarly, the Y axis 
also plots the coordinate of h corresponding to the 90" 
or 270" direction. At the center of the two-dimensional 
variogram graph is the variogram value for h = 0, 
which is zero by definition. Notice that the graph is 
symmetric about its origin since the variogram value 
for + h is equal to that for - h. 

To appreciate better the exhaustive variogram graph, 
consider a straight line anchored on the point h = 0 
and extending to point (1 0,O) like a clock hand pointing 
to "3." Ifwe were to plot this line's values as a function 
of h as in a traditional variogram, then the resulting 
diagram would correspond to the 0" variogram with a 
i0" tolerance. Now imagine that the line anchored at 
the center is allowed to rotate counter-clockwise. As it 
proceeds through one revolution, it sweeps through all 
directional variograms. This two-dimensional graph of 
spatial continuity permits a quick and comprehensive 
appraisal of the data's directional spatial dependence. 

1 \ ( h )  

+ A h )  = - 2 [z,(x,) - z.i(x, + h)l 
2h(h) ,=, 

"z,(x,) - Zi3(Xi + h)l (9)  

Unlike the variogram (Eq. 5 ) ,  which is always pos- 
itive, the cross-variogram can be either positive or neg- 
ative, corresponding to whether the two variables co- 
vary in a positive or negative manner. 

Consider the directional cross-variograms between 
the summer collections of D. globosus and P. coeru- 
lescens (Fig. 34). Note that these plots have been stan- 
dardized by the non-spatial (i.e., h = 0) covariance, 
C(O), between the two carabids (see Eq. 1). The plots 
display pronounced anisotropy- some directions are 
negative, some are positive, and some are near zero 
throughout almost all lags. The raw data plots (Fig. 4) 
and the bivariate scatter plot (Fig. 7) reveal the reason 
for this admixture: the carabids' spatial patterns co- 
incide over parts of the sampling space and disagree 
over the other parts. The largest concentration of D. 
globosus occurs in the middle of the sampling grid 
where P. coerulescens also occurs, but the largest num- 
bers of P. coerulescens occur in the large X, small Y 
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FIG. 33. Exhaustive non-ergodic covariance and non-er- 
godic correlogram of the summer collection of Pterostichus 
coerulescens. Original data from Hengeveld ( 1  979). 

portion, where D. globosus numbers are negligible. In 
the small X ,  large Y part of the grid the beetles' con- 
centrations are similarly small. Accordingly, in the 67.5" 
to 135" directions whenever the numbers of one cara- 
bid are large or small, the numbers of the other carabid 
also tend to be simultaneously large or small. In the 0" 
and 22.5" directions, on the other hand, large concen- 
trations of the one beetle tend to correspond to areas 
of small concentration for the other species. 

Habitat partitioning is considered to be a mechanism 
by which organisms reduce competition for food or 
territory. Both the small D. globosus and the larger P. 
coerulescens typically feed on organisms that are found 
in moist, clay soils (Thiele 1977). Hengeveld ( 1  979) 
reports that the first two-thirds of the sampling grid is 
undrained while the final third is drained. D. globosus' 
distribution is nearly entirely within the undrained por- 
tion, but it does not extend over the whole undrained 
area. P. coerulescens' largest concentrations are found 
in the drained part of the field, but its territory does 
overlap that of the other beetle. If these data are an 
example of habitat partitioning, then the cross-vario- 
grams suggest that the process is most pronounced in 
the 0" and 22.5" directions and least in the 67.5" to 
135" directions. Habitat partitioning's spatial depen- 
dence may have a directional component. 

Before we investigate some other measures of spatial 
covariation, let us view the cross-variogram between 
the two seasonal collections o f P .  coerulescens (Fig. 35). 

As noted before, the spatial distributions of the two 
collections are quite similar, but the overall numbers 
of the species are greater in the fall, and individuals 
are more concentrated toward one comer of the grid 
(see Fig. 4). Not surprisingly, then, the directional cross- 
variograms match the directional variograms (Figs. 20 
and 21); the maximum rate o f  change occurs in the 
1 12.5" and 135" directions while minimum change takes 
place in the 0" and 22.5" directions. 

Non-ergodic tools for measuring spatial covariation 
are also available. Akin to the spatial covariance (see 
Eq. 6), the spatial cross-covariance, C,,(h),  between 
two variables A and B is estimated: 

' [ z ! j ( x ) )  - m / j + h l '  ( lo) 
Similarly, the estimated non-ergodic cross-correlo- 
gram, ,b ,B(h), is simply the cross-covariance function 
that filters both variables' lag variances: 

dl,(h) = ~18(h)Y(sl-hsB-h). ( 1  1) 

It is important to notice that unlike the cross-var- 
iogram (Eq. 9), which provides identical results no mat- 
ter which property, A or B, is the head or tail of the 
spatial vector, the cross-covariance and cross-correl- 
ogram of A (at the tail) onto B (at the head) is not the 
same as B (at the tail) onto A (at the head). This is 
because both the order and direction are switched when 
the variables are reversed (Isaaks and Srivastava 1989). 
Thus, although ? I B ( + ~ )  = ?m(-h) and C,,(+h) = 

eB4(-h) ,  d,,lB(+h) is not equal to &(-h). Conse- 
quently, cross-covariances and cross-correlograms 
should be computed and compared for both S h  and 

FIG. 34. Standardized directional cross-variograms. with 
22.5" increments and T 11.25" tolerances, between the sum- 
mer collections of Dvschirius globosus and Pterostichus coe- 
rulescens. Original data from Hengeveld ( 1  979). 
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FIG. 35. Standardized directional cross-variograms, with 
22.5" increments and * 11.25" tolerances. between the sum- 
mer and fall collections of Pterostichus coerulescens. Original 
data from Hengeveld ( 1  979). 

-h directions to obtain a complete picture of spatial 
covariation. 

Exhaustive models of spatial covariation. - The chore 
of computing directional cross-variograms, cross-co- 
variances, and cross-correlograms is further compli- 
cated by the need to compute and compare multiple 
+ h and - h models. Fortunately, through the use of 
exhaustive (or two-dimensional or planimetric) cross- 
covariance and cross-correlograms, the task is made 
easier. In Fig. 36 all significant lags for all directional 
cross-covariances are plotted topographically for the 
summer collections of D. globosus and P. coerulescens. 
Notice that the values on this plot have not been stan- 
dardized or expressed in cross-variogram form. Thus 
far, for the sake of conformity, all variograms, covar- 
iances, and correlograms have been presented as var- 
iograms. The reason for this break from tradition can 
be appreciated better once a couple of the exhaustive 
models have been interpreted. 

In Fig. 36 the most striking feature of the D. glo- 
bosus-P. coerulescens cross-covariance is its severe 
asymmetry. Three main features are evident. First, the 
cross-covariances increase strongly with increasing h 
distance (2 7 lags or 280 m) in the - 10" direction. In 
their usual form covariance and cross-covariance val- 
ues typically decrease with increasing distance, and soon 
we will see why this is so. 

Second, the functions are continuous and positive, 
but small, in the 50" and - 50" directions. Finally, the 
values are negative with increasing h (-6 lags or 240 
m) in the 90" to 180" directions. 

The reasons for these results are quickly grasped by 
reviewing the display of the raw data (Fig. 4). Note the 
direction and distance between the largest concentra- 

tions of the two beetles; they are oriented in the 0" to 
- 10" directions and they are separated by =7  lags. 
Moreover, both carabids' density isarithms are also 
"drawn-out'' or more continuous in roughly the 50" 
and - 50" directions; hence, their joint positive spatial 
dependence is reflected in the cross-covariance as the 
continuous, positive, but small-valued isarithms in 
these directions. The negative pocket centered at about 
(-4, 5) in the cross-covariance of Fig. 36 is accounted 
for by the fact that the two carabid distributions occur, 
for the most part, in different portions of the sampling 
space. For example, while D. globosus' density is great- 
est around (9, 2) and ( lo ,  4) on the raw data plot of 
Fig. 4,240 m away in the 120" direction P. coerulescens' 
density is practically nonexistent. This negative rela- 
tionship in the 120" direction is consistent over nearly 
all of the sampling space. 

The offset between the two carabid beetle densities 
produces the asymmetry evident in the cross-covari- 
ance and cross-correlogram. In geostatistical parlance 
this is known as a "lag effect" (Isaaks and Srivastava 
1989). The cross-covariance and cross-correlogram can 
distinguish lag effects that the cross-variogram cannot 
reveal. Transforming a cross-covariance or cross-cor- 
relogram into cross-variogram form would eliminate 
any differences between + h and - h. For this reason 
the exhaustive cross-covariances and cross-correlo- 
grams of Figs. 36 and 37 were not transformed into 
cross-variograms. 

As can be seen in the exhaustive cross-correlogram 
between the two carabids (Fig. 37), filtering the effects 
of the lag variances does not change appreciably the 
exhaustive cross-covariance patterns. 

Unlike the anisotropic, trend-included cross-vario- 
grams between the summer and fall collections of P. 
coerulescens (see Fig. 3 5), the exhaustive cross-covar- 
iance's nearly concentric rings show isotropy (Fig. 38). 
There is a short, 1-2 lag, continuity in the 90" and 270" 
directions, and another longer range, 6-8 lag, conti- 
nuity in the 0" to 10" directions, but once the local 
means are accounted for, this organism's density be- 
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FIG. 36. Exhaustive, non-ergodic cross-covariance be- 
tween the summer collections of Dyschirius globosus and 
Pterostichus coerulescens. Original data from Hengeveld (1 979). 
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FIG. 37. Exhaustive. non-ergodic cross-correlogram be- 
tween the summer collections of D1schiriu.s globosus and 
Pterostrchtiscoerirlescens. Ongmal data from Hengeveld (1 979). 

tween seasons does not change appreciably with direc- 
tion. Once the local variances are filtered, however, the 
0" to 10" continuity is more pronounced, and it begins 
at a much shorter (3 lag) distance (Fig. 39). Addition- 
ally, the cross-correlogram exhibits a marked and most 
rapid change in density in the 135" and 3 15" directions. 
The shift in density toward one corner of the grid from 
summer to fall can be seen in the plot of raw data (Fig. 
4), but the 0" to 10" continuity is not readily apparent. 

Let us summarize the geostatistical findings of these 
distributions. The D. globosus variogram generally ex- 
ceeded the overall sample variance (a possible sign of 
trend) and reflected a correlation distance or range of 
x 9  lags or 360 m. When the effects of local mean and 
variance changes are removed by using non-ergodic 
covariances and correlograms, this carabid manifests 
a correlation distance of 7 lags of 280 m. Comparison 
of all three spatial continuity tools (i.e., the variogram, 
covariance, and correlograms) shows that this beetle's 
spatial pattern is composed of regional trends as well 
as lag-to-lag changes. 

A larger-scale trend is much more pronounced in the 
P. coerulescens data, but once filtered out the distri- 
butions of this beetle appear isotropic. The trend or 
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FIG. 39. Exhaustive. non-ergodic cross-correlogram be- 
tween the summer and fall collections of Pterostichus coeru- 
lescens. Original data from Hengeveld (1979). 

larger-scale pattern (i.e., pattern larger than the sam- 
pling space) is oriented in the 135" direction, becoming 
more pronounced and concentrated from the summer 
to the fall, but the underlying lag-to-lag spatial pattern 
suggests no such dominant directional preference ex- 
cept for a slight 90°-2700 elongation. The nuggets dis- 
played in these representations suggest that some un- 
detected spatial continuity exits at less than the 
minimum lag spacing of 40 m. 

The cross-covariances and cross-correlograms reveal 
the two beetles' distributions to be related positively 
with increasing distance in the 340" direction, but re- 
lated negatively in the 120" direction. If habitat par- 
titioning is taking place, then these results suggest that 
the effect is directionally dependent and limited for 
any direction. Similarities between species might signal 
the presence of an environmental cue (e.g., soil clay 
content, prey spatial patterns, soil moisture content). 
Between seasons the densities of P. coerulescens display 
isotropic behavior, but the densities remain correlated 
to a greater degree in the 10" direction. The greatest 
rate of change in density between seasons occurs along 
the 135"-3 15" line. 

Geostatistical tools permit us to quantify the spatial 
dependence for a single organism or the similarities 
and differences between two species. In so doing, we 
can account simultaneously for both direction and dis- 
tance. The foregoing geostatistical analyses were un- 
dertaken on the fairly obvious spatial distributions of 
the carabids to give the reader confidence. As will be 
seen below, these tools will be particularly helpful in 
cases where an organism's spatial distribution is not 
as self-evident as the carabids'. 

The multi-scaled spatial arrangement of 
Balanus balanoides on a cutter hull 

h in 0"-150" Direct'on Having introduced and illustrated many geostatisti- 
cal tools for modeling spatial continuity, we are now 
in a Position to explore other organisms and their spa- 
tial relations at a quicker pace and occasionally inter- 

FIG. 38. Exhaustive, non-ergodic cross-covariance be- 
tween the summer and fall collections of Pterostjchus coeru- 
lescens. Original data from Hengeveld (1 979). 
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FIG. 40. Standardized directional variograms, with 45" 
increments and i22.5" tolerances, for Kooijman's ( 1  976) cen- 
sus of Balanus balanoides on a 10 x 10 grid of 7.5 x 7.5 cm 
cells. 

sperse new geostatistical techniques. Kooijman's (1 976, 
1979) two renditions of the same spatial pattern of 
acorn barnacles, Balanus balanoides, depict four dis- 
tinct areas where there is a large density of mostly 
smaller barnacles and the predominantly larger bar- 
nacles are more evenly distributed throughout the sam- 
pling space (see Figs. 9 and 11). Following Kooijman's 
lead, we analyze these data as both cell counts and as 
point processes since these approaches are common 
ways to investigate ecological phenomena, and more 
importantly, each tells us something more about these 
barnacles' spatial distribution. 

Zonal and geometric anisotropy. -In the above ex- 
ploratory data analysis (EDA) of the cell counts (see 
Geostatisticalprocedure in ecological analysis: Data set 
2: acorn barnacles . . .) no preference was found for the 
major (X, Y, or X + Y) directions. The O", 45", 90", 
and 135" direction variograms, however, exhibit a dif- 
ferent, if subtle, form of anisotropy (Fig. 40). Aside 
from the 90" direction, all the variograms ranges occur 
at just over 0.2 m, but the sills are different. When 
directional variograms have common ranges and dif- 
ferent sills we have "zonal anisotropy," a condition 
symptomatic of different directions or zones expressing 
different degrees of overall spatial continuity. The var- 
iograms suggest that the spatial variation in the 0" and 
135" directions is greater than that for the 45" direction. 

The above EDA also demonstrated that these cell 
counts also reflected a proportional effect (see Fig. 14), 
a positive and linear relationship between local means 
and variances. In the foregoing analysis of the carabid 
beetles such local effects caused difficulty in using the 
variogram to represent spatial continuity. The direc- 
tional covariances of the barnacle cell counts reaffirm 
that finding (Fig. 41). By compensating for the cell 
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FIG. 4 1. Standardized directional non-ergodic covari- 
ances expressed in variogram form, with 45" increments and 
i22.5" tolerances, for Kooijman's (1976) census of Balanus 
balanoides, on a 10 x 10 grid of 7.5 x 7.5 cm cells. 

means, zonal anisotropy is eliminated and the 90" di- 
rection now exhibits a definite range. Accounting for 
the lag variances with correlograms does not change 
the covariances (Fig. 42), so it is the change in the 
magnitude of the cell numbers, not their variability, 
which is responsible for the zonal anisotropy. 

Notice that even though all four covariances display 
the same sill, the ranges in the 0" and 135" directions 
are e0 .2  m while the ranges in the 45" and 90" direc- 
tions are e 0 . 3  m. Same or similar sills with different 
ranges signal another type of anisotropy: "geometric 
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FIG. 42. Directional non-ergodic correlograms expressed 
in variogram form, with 45" increments and k22.5" toler- 
ances, for the Kooijman's (1  976) census of Balanus balanoides 
on a 10 x 10 grid of 7.5 x 7.5 cm cells. 
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FIG. 43. Omnidirectional, standardized non-ergodic co- 
variance and correlogram expressed in variogram form for 
Kooijman’s ( 1  976) census of Balanus halanoides (see Fig. 1 1 )  
expressed in a 25 x 2 5  grid. 

anisotropy.” In its simplest form, geometric anisotropy 
is akin to elliptically shaped zones wherein the data 
values are correlated, i.e., zones “stretched” in the di- 
rections of the maximum range. A review of the bar- 
nacle grid counts (Fig. 9) or of the raw data (Fig. 1 1 )  
shows that the four clusters of mostly smaller barnacles 
are about ~ 0 . 2 - 0 . 3  m in size. Additionally, the four 
clusters are generally elliptically shaped and have ma- 
jor axes oriented in the 45” to 90” directions. 

The spatial dependence of barnacle position and 
size. -The 10 x 10 grid of cells allows us to explore 
the spatial dynamics of the barnacles’ density over uni- 

15 

FIG. 44. Standardized omnidirectional variogram of the 
estimated surface areas occupied by the 166 Balanus balanoi- 
des (see Fig. 1 1). Original data from Kooijman (1979). Here 
Kooijman’s data, which were gathered on a 10 x 10 grid, 
were expressed in a 25 x 25 grid. 
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FIG. 45. Standardized, omnidirectional, non-ergodic co- 
variance expressed in variogram form of the estimated surface 
areas occupied by the 166 Balanus balanoides (see Fig. 11) .  
Original data from Kooijman (1979). Here Kooijman’s data, 
which were gathered on a 10 x 10 grid, were expressed in a 
25 x 25 grid. 

form subregions, but barnacle position as well as size 
are important features. To investigate barnacle posi- 
tion, a finer grid can be overlaid on the sampling space, 
one where nearly all cells are small enough so that they 
contain either one barnacle or none. Through various 
trials, a cell spacing of 25 x 25 was found to be ade- 
quate because only 4% of the cells contained > 1 bar- 
nacle. The omnidirectional standardized variogram, 
covariance, and correlogram for these newly expressed 
density data display the same 0.2-0.3 m range (Fig. 
43). Like the 10 x 10 grid’s spatial-continuity models, 
this new presentation of the data describes the spatial 
continuity due to position and appears to manifest the 
spatial pattern of the four clusters. 

Given that a particular location is occupied by a 
barnacle (see Fig. 43), then the spatial continuity of 
barnacle size can also be modeled. When the estimated 
barnacle size is analyzed, the resulting variogram ex- 
hibits two structures (Fig. 44). One feature is the pro- 
nounced variogram increase at small lag distances and 
then a short-lived leveling off at ~ 0 . 0 6  or 0.07 m. The 
variogram then again increases only to level off once 
more at a range of ~0.275-0.3 m. This latter range 
coincides with our earlier finding, and it relates rea- 
sonably to the average size of the four clusters. A quick 
check reveals that the clusters are composed of the 
smallest 30% or so of the barnacles. Moreover, the 
average closest distance to another small barnacle in 
this smaller 30% class is 0.069 m. This distance is the 
same as the range of the first structure. These results 
conform nicely to what can be readily observed, but 
as we will now see, they are not due to lag-to-lag vari- 
ation. 

Pure nugget behavzor. -Identical to the vanogram 
of the randomly distributed, carabid beetle D. globosus 
data (see Fig. 2), both the non-ergodic covariance and 
correlogram values of barnacle size are nearly equiv- 
alent to the sample variance (see Figs. 45 and 46). Such 
a complete lack of structure (i.e., the rise and then 
leveling off shape) is referred to as “pure nugget be- 
havior.” It represents an absence of lag-to-lag spatial 
continuity at the spatial scale sampled. 
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FIG 46 Omnidirectional non-ergodic correlogram ex- 

pressed in vanogram form of the estimated surface areas oc- 
cupied by the 166 Balanus balanoides (see Fig 1 1 )  Original 
data from Kooijman (1979) Here Kooijman’s data, which 
were gathered on a 10 x 10 grid. were expressed in a 25 X 

25 grid 

FIG. 48. Standardized omnidirectional lag variances ofthe 
estimated surface areas occupied by the 166 Balanus bala- 
noides (see Fig. 1 1 )  as reported by Kooijman (1979). Here 
Kooijman’s data, which were gathered on a 10 x 10 grid, 
were expressed in a 25 x 25 grid. 

Once again, the reason why the variogram is often 
an incomplete image of spatial dependence is because 
it disregards local mean and variance differences 
throughout the sampling space. In fact, plots of the lag 
means and variances (see Figs. 47 and 48) are, point 
for point, nearly equivalent to the variogram of Fig. 
44. The lag means and variances, which are related 
linearly and summarized by the proportional-effect sta- 
tistics (see Fig. 14), account for the spatial dependence 
of the barnacles when their size is the variable of in- 
terest. 

Sedentary organisms like acorn barnacles must com- 
Pete for available space in order to survive. Connell’s 
(1 96 1) frequently cited study demonstrated that in or- 
der to minimize the interspecific competition between 
adult Balanus and Chthamalus barnacles, Chthamalus 
predominates in the upper, drier parts of the intertidal 
zone because it is better able to withstand desiccation. 
The above geostatistical results suggest that given an 
acorn barnacle existing at a location, size has no de- 
tectable lag-to-lag spatial dependence; the dependence 
is purely due to local mean and variance differences. 
This linear relationship between the local number and 

variance of barnacle sizes may be a reflection of the 
organism’s ability to minimize intraspecific competi- 
tion. Regions with many (small) individuals also have 
the smallest size variation. Conversely, areas with large 
individuals are separated by relatively open areas. There 
is another way, however, to quantify the lag-to-lag spa- 
tial dependence of barnacle size. 

Indicator variograms and correlograms for  specific 
barnacle sizes. -Geostatistics provides a way to quan- 
tify the spatial continuity of a particular size class of 
barnacles and to simultaneously regard their position. 
Barnacle position was modeled above by considering 
the cell counts in a 25 x 25 grid because nearly all cells 
were populated by either one individual or none. We 
can perform the same procedure but now code each 
cell with either a “0” or a “1” to denote absence or 
presence of the organism. Furthermore, such coding 
may be performed for any size class desired. For ex- 
ample, a value of one may be assigned to all cells oc- 
cupied by a barnacle that is less than or equal to some 
predetermined threshold size or cutoff value, k. All cells 
that do not contain a barnacle or cells that are occupied 
by a barnacle whose size is > k are assigned a value of 
zero. Such “0” and “1” coding of data is known as an 
“indicator transform,” i ( x ;  z ) ,  for the variable, z. The 
indicator transformed variable is a function of location, 

’ 2 -  - + +  x ,  and is defined, for example, by: 

(12) 
1 if z ( x )  5 k 
0 if z ( x )  > k. 

,* f , /  ‘* **F+ 
f l k ’  - 

i (x ;  z )  = 
1 2  i 

FIG. 47. Standardized omnidirectional lag means of the 
estimated surface areas occupied by the 166 Balanus bala- 
noides (see Fig. 1 1 )  as reported by Kooijman (1979). Here 
Kooijman’s data, which were gathered on a 10 x 10 grid, 
were expressed in a 25 x 25 grid. 

Note that :he average of the indicator equals the 
proportion of values that are less than the threshold. 
Put another way, the average of the indicator is equiv- 
alent to the cumulative distribution of the variable in 
the sample. Hohn’s (1988) text provides a good ex- 
ample of indicator variograms applied to petroleum 
data. 

An array of indicator variograms, each representing 
a specific size class, provides the ecologist with unique 
models of the spatial dependence for the whole spec- 
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FIG. 49. Standardized indicator variograms and indicator correlograms expressed in variogram form for the second decile 
of the estimates of Bulunus bulunoides surface areas (see Fig. 1 1 )  as reported by Kooijman (1979). 

trum of an organism's attribute. Indicator variograms 
are models of discrete classes along the variable's cu- 
mulative frequency distribution. The more cutoffs rep- 
resented, the more refined will be the cumulative fre- 
quency distribution reproduction. Ultimately, the 
number of data within any class limits our reproduc- 
tion. For this reason, indicator variograms are rarely 
computed beyond the smallest or largest tenths of the 
data. A frequently used set of indicator classes are dec- 
iles. 

The traditional modeling tool for indicators is the 
variogram, but where the data are skewed or clustered 
we have seen that the variogram can provide an erratic 
and unreliable image of the spatial dependence. Indi- 
cators cause no problems with skewness, but clustering 
can impart local mean and variance changes. 

Conspicuous differences exist between second-decile 
indicator variograms and indicator correlograms for 
each of the four major directions for the 25 x 25 grid 
of barnacle counts (Fig. 49). Similar differences are 
apparent in the other deciles' models as well. The cor- 
relograms are all smoother than the variograms and 
are better behaved (i.e., they level off at the sample 
variance and vary less thereafter). Differences are es- 
pecially apparent in the 45" and 90" directions. In these 
directions the variogram values vary sinusoidally 

around the sample variance. This often is ascribed to 
a periodicity in the data, periodicity probably due to 
the cluster-to-cluster differences. However, we saw how 
this difference was essentially due to differences be- 
tween local means and variances. By accounting for 
these local differences, the correlograms filter the local 
changing means and variances. The periodicity in the 
135" direction at a lag of ~ 0 . 4  m is probably due to 
the comparisons between the upper- and lower-right 
clusters because these are the only two clusters close 
enough to be included in the significant lag classes. 
Clearly, the clustering of the small barnacles affects 
indicator variograms and any interpretations made from 
them. 

Let us now examine more closely and completely 
the spatial variability of the barnacle indicator data as 
revealed by the correlograms. Exhaustive correlograms 
for the second, fourth, six, and eighth deciles provide 
a directionally comprehensive picture of spatial con- 
tinuity for four size classes of the barnacles (Fig. 50). 
Note that unlike the exhaustive cross-correlogram and 
cross-covariance, the exhaustive correlogram and co- 
variance are symmetric for + h and - h about the origin 
or the center point on the graphs. 

At the second decile there is an evident geometric 
anisotropy at short lags. The major axis of this an- 
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FIG. 50. Exhaustive non-ergodic correlograms expressed in variogram form for the second, fourth, sixth, and eighth deciles 
of the estimates of surface areas occupied by Balanus balanoides. Original data from Kooijman (1979). 

isotropy is in the 140" direction and it corresponds to 
a short-range preferential alignment for the smallest 
fifth of the barnacles. With increasing distance, this 
spatial feature gives way to a second geometric an- 
isotropy, one oriented in about the 75" direction. This 
latter geometric anisotropy corresponds to the elliptical 
shape and orientation of the four clusters, a shape ap- 
parent in the raw data plot. 

Hole-eflect structure. -Another notable feature of the 
second decile correlogram that has been flipped in var- 
iogram form is the zone of smaller values centered at 
about (-6, 11) and its equivalent at (6, - 11). These 
depressions occur at a distance of -0.375 m and in 
about the 120" and 300" directions. In geostatistics, 
such a dip after the sill is known as a "hole-effect'' and 
it suggests that the sample values are similar for that 
particular lag distance and direction. A quick check 
again of the raw data (Fig. 11) confirms the correlo- 
gram's hole-effect feature: the right two clusters are 

indeed oriented in the 120" and 300" directions to each 
other. Notice also that a number of the smallest bar- 
nacles in these clusters are separated by at most 0.375 
m. Other cluster-to-cluster comparisons do not show 
up as hole-effects because only a few of the barnacles 
are paired for the maximum significant distance of 
20.375 m. A larger sampling area would be likely to 
reveal these and other potentially meaningful hole-ef- 
fects. 

As the decile cutoffs increase, the short-range, 140" 
anisotropy becomes less pronounced until at the eighth 
decile it is virtually absent. Adding increasingly larger 
barnacles to the total changes the shape and size of the 
clusters to reflect longer correlation distances, distances 
oriented more in the 75" to 80" directions. By the eighth 
decile, on average the four clusters appear as ellipses 
-0.12 x 0.24 m in size. These dimensions are identical 
to the eighth decile correlogram's minimum and max- 
imum ranges for the 75" geometric anisotropy. 
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FIG. 5 1. Standardized, directional, indicator variograms for the presence-absence of Selander's (1  970) Mus rnusculus 
genotype data. Variograms plot each 45" direction with a 22.5" tolerance. 

Another change in the spatial continuity of the bar- 
nacles as increasingly larger ones are considered is the 
recession of the hole-effect in the 120" direction. Ad- 
dition of the more spatially dispersed, larger barnacles 
minimizes the hole-effect structure. In addition, the 
hole-effect areas are more spatially diffuse. 

These geostatistical results have an intuitive ecolog- 
ical appeal. Given that Balanus is a sedentary and ter- 
ritorially aggressive organism, survival of a young one 
depends on its proximity to and the size of its neigh- 
bors. One might expect, therefore, that temtory size 
and barnacle size would be related positively, and, in- 
deed, on average the smallest barnacles occur closer to 
one another and the largest barnacles appear more or 
less evenly distributed throughout the sampling space. 
The indicator correlograms show that the larger bar- 
nacles are correlated about twice as far in the 75" di- 
rection than in the perpendicular (1 65") direction. In 
contrast, the smallest barnacles remain correlated about 
twice as far at small lags in the 140" direction. This 
direction is nearly perpendicular to the larger barna- 
cles' major axis of geometric anisotropy and might 
signal the direction in which open areas may be col- 
onized successfully. 

In the following case study indicator variograms and 
correlograms are once again used to uncover spatial 
dependence in an organism attribute: gene frequency. 
This time, however, the indicator coding will be per- 
formed on a nominal variable. Unlike the previous 

two case studies, spatial dependence is not obvious in 
a plot of these raw data. 

The ecological foundation and spatial 
patterns of small-scale Mus musculus 

geneflow 
Selander's (1 970) data on the small-scale patterns of 

Mus musculus blood enzymes (see Geostatistical pro- 
cedures. . . : Data set 3 .  . . , above) elicit three im- 
mediate questions about their spatial continuity: (1) 
regardless of genotype, what is the pattern given the 
presence and absence of caught mice?, (2) what are the 
individual spatial dependencies, if any, for the three 
genotypes?, and (3) what are the spatial dependencies 
between genotypes? 

To answer the first question, we can employ indi- 
cator coding to create a new field of 0 s  and Is, where 
"0"s denotes absence and "1"s represent the presence 
of a caught mouse. Since the data are collected on a 
regular grid, they do  not manifest clustering. Hence, 
analysis using variograms should be sufficient, but in- 
dicator correlograms were also computed. In the pre- 
sentation below if there was no meaningful difference 
between the correlogram and variogram, the variogram 
will be presented. For convenience, we again designate 
the X axis or the longest side of the grid as the 0" 
direction. 

Indicator variograms for the four primary directions 
demonstrate a marked geometric anisotropy (Fig. 5 1). 
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FIG. 52 .  Exhaustive, non-ergodic, indicator correlograms for the three Mus rnusculus genotypes. Original data from Selander 
(1970). Lag distance is in 0.49 m units. 

The range in the 0" direction is over three times as far 
as in the 90" direction, while ranges in the 45" and 135" 
directions are slightly longer than the 90" range. Such 
dramatic differences are lost in Sokal and Oden's 
(1 978a, b) analysis that mixes different directional cor- 
relations. Selander originally proposed mouse temto- 
riality as a mechanism for the obvious heterogeneity 
between genotypes, but these data consider mouse po- 
sition regardless of genotype, and suggest that some- 
thing else is influencing mouse presence and absence. 

In a small passage of Selander's paper is a description 
of the barn environment. Specifically, the chickens are 
housed in cages that are suspended above the barn floor 
in rows parallel to the sampling grid's 0" side. The mice, 
he notes, burrow and nest throughout the mounds of 
accumulated chicken feces. Hence, the extremely long 
spatial correlation in the 0" direction is probably due 
to the availability of this habitat component. 

Let us now see whether the availability and orien- 
tation of this habitat component influences individual 
genotype spatial patterns. This is accomplished quite 
simply by indicator coding: 1 s are assigned to locations 
where a mouse expresses a particular genotype and 0s 
are coded elsewhere on the grid. Initially these coded 

data were analyzed using standardized variograms to 
permit easier visual inspection between genotypes. 
However, the resulting sills all occurred beyond the 
variance value of unity and at different levels. This 
behavior signals possible differences in local means and 
variances. That result seems reasonable given that we 
are analyzing the distribution of a specific gene of an 
organism that is territorial. Therefore, we might expect, 
a priori, that any genotype's spatial distribution will 
be somewhat clumped. As in the last ecological ex- 
ample, correlograms were then also computed and the 
results found to be better behaved. 

The non-ergodic exhaustive correlograms are flipped 
in variogram form and model the spatial continuity 
differences between the genotypes (Fig. 5 2 ) .  Although 
indicator-coded data typically produce spatial-conti- 
nuity models that have larger nuggets than continuous 
data, all of the correlogram models have substantial 
nuggets. Thus, on the one hand, there is likely to be 
undetected spatial pattern smaller than the 0.5-m sam- 
ple spacing. On the other hand, the poorer structures 
are indications that the spatial pattern of the mice, 
which is strongly influenced by habitat availability, is 
more prominent than the spatial pattern due to a spe- 
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cific genotype. Nevertheless, some specific-if subtle- 
genotype differences are apparent. 

The exhaustive correlograms are noisy, but the im- 
portant features are the differences between the geno- 
type ranges. The homozygous medium genotype dem- 
onstrates a geometric anisotropy with a 60" major axis. 
Its range in the 0" direction is the shortest of the three. 
The heterozygous genotype manifests the smallest 90" 
range, but a narrow 0" range that extends out to a 
distance of -21 lags or just over 10 m. The homo- 
zygous slow genotype shows both a long 0" range and 
a 90" range that goes beyond the maximum significant 
distance of 7 lags or -3.4 m. It is unknown whether 
these differences are related to preferences for move- 
ment because there is no plausible reason why one 
genotype would show a stronger spatial correlation in 
any one direction over another. Again, the large nuggets 
suggest that these genotype differences are due to chance. 

Finally, we can model the spatial cross-correlation 
between genotypes. To do so, our indicator transfor- 
mation proceeds by coding locations that express one 
genotype with a '' 1 " and locations expressing another 
are coded "0." This makes the results conditional on 
locations having mice of the two genotypes. It also 
reduces considerably the possibilities of modeling sig- 
nificant directional variograms because of the smaller 
number of pairs. 

Omnidirectional cross-correlations computed using 
both the traditional variogram and the non-ergodic 
correlogram show that the cross-correlograms tend to 
have smaller nuggets than the cross-variograms (Fig. 
53). Curiously, the best structures are achieved when 
the homozygous medium genotype is paired with either 
of the other genotypes. If, as Sokal and Oden (1 978b) 
suggest, more heterozygote-homozygote pairings are 
expected, the cross-correlograms between these geno- 
types is likely to demonstrate strong spatial continuity, 
while a cross-correlogram between the two homozy- 
gous genotypes would be expected to demonstrate spa- 
tial independence or pure nugget behavior. On the 
contrary, it is the homozygous slow-heterozygous cross- 
correlogram that reflects pure nugget behavior. These 
results suggest that the locations of or proximity to a 
mouse with the homozygous medium genotype dom- 
inate the inter-genotype spatial patterns. This result 
compliments Sokal and Oden's (1 978b) finding that 
the autocorrelation between contiguous homozygous 
medium pairings is strong and positive. 

The individual and joint spatial 
patterns of adult Diabrotica barberi and 

Zea mays root damage 
Our exploratory analysis of Tollefson's data (see 

Geostatistical procedure in ecological analysis: Data set 
4 . . . , above) of adult rootworms and concomitant 
damage to corn roots revealed a large difference be- 
tween the Pearson and Spearman correlation coeffi- 
cients. This suggested that the spatial relationship be- 
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FIG. 53. Omnidirectional standardized cross-variograms 
and non-ergodic cross-correlograms between the three AMus 
musculus genotypes reported by Selander ( 1  970). 
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tween the worm and its host is non-linear, or that data 
outliers are minimizing the point-to-point correlation, 
or both. Mindful of these possibilities, we now explore 
their individual as well as their joint spatial relation- 
ships geostatistically. 

The importance of identifying outliers. -Conditional 
histograms of the beetle indices for each root rating 
suggest a positive relationship between the two vari- 
ables. Two features contribute to a more pronounced 
relationship: (1) the data represent overlapping cate- 
gories or rankings of beetle density and root damage, 
and (2) some locations express a large beetle index but 
a small root rating, while some others reflect the op- 
posite. Matching of opposite beetle and root ratings 
could constitute outliers. Outliers, i.e., unusually large 
or small values, can be identified. Outliers are of in- 
terest in modeling spatial variation or cross-correlation 
using variograms and cross-variograms because both 
measures average squared differences between data lo- 
cations. Consequently their values are strongly influ- 
enced by unusually large or small data. 

Identifying outliers may be of interest in ecology 
regardless of any geostatistical applications. Knowing 
the locations of unusually large or small concentrations 
of an organism or an environmental component can 
improve the ecologist’s ability to understand the un- 
derlying processes that give rise to and sustain the or- 
ganism+nvironment relationship. This is especially 
important in ecological investigations because ecolog- 
ical variables tend to be unpredictable and to vary 
spatially and temporally to a great degree. When deal- 
ing with ecological properties, therefore, outliers may 
be expected, not merely suspected. 

Outliers can be identified through a variety of means. 
One technique was described earlier: h-scattergram 
values that plot very far from the 45” line are likely 
outlier candidates. With this method it is incumbent 
on the researcher to investigate these possible outliers. 
For example, does the suspected outlier occur in an 
area of generally small or large values? Could the un- 
usual value be an incorrectly coded datum? Is the sus- 
pected outlier’s presence due to an environmental or 
organism anomaly? Only after good ecological judg- 
ment should an outlier be removed prior to variogram 
analysis. This process can be tedious for large, outlier- 
laden data sets, but it is perhaps the only legitimate 
means for outlier identification and removal. With so 
few rating categories in the present data, outliers will 
be particularly difficult to explicitly identify. 

Many other, more automatic, outlier identification 
techniques have been proposed. Dowd (1984) can be 
consulted for reviews of many of the more popular- 
often called “resistant”-variogram methods, i.e., var- 
iograms that are resistant to the outliers’ effects. Huber 
(1964, 1972) provides an excellent statistical exami- 
nation of outlier-resistant estimation. Some of the more 
popular resistant variogram techniques are: the me- 
dium absolute deviation estimator (Dowd 1984, Jour- 

- Vol. 62 ,No  2 

nel 1984a), generalized distance measures (Journel 
1989), median polish (Cressie 1984, 1986), the Cressie- 
Hawkins estimator (Cressie and Hawkins 1980), and 
Omre’s estimator (Omre 1984). 

Comparisons will be entertained in the next two sub- 
sections between the h-scattergram cleaning technique 
and Hawkins’ (1980) method of spatial outlier iden- 
tification. Hawkins’ method is chosen because it is not 
linked to variography per se, so the ecologist may use 
his tool to locate unusually large or small data. His 
method is also easy to implement. Krige and Magri 
(1 982) may be consulted for a demonstration of Haw- 
kins’ method as applied to gold mining data. 

Hawkins’ (1 980) spatial outlier detection method. - 
Hawkins’ approach is straightforward. All values, z(x), 
are considered a priori suspect. Because spatial outliers 
are not necessarily the largest or smallest values en- 
countered, each value is compared to its neighboring 
values. Let n be defined as the number of neighboring 
values excluding z(x), let M equal the arithmetic mean 
of the n values, and let a2 denote the average variance 
for equivalently sized neighborhoods over the sam- 
pling space. Assuming the neighborhood values are 
normally distributed, Hawkins has shown: 

(13) 
n[z(x)  - M I 2  

( n  + l)u2 
to be distributed as a x2,. Thus, if the value of Eq. 13 
is outside the expected x2 distribution, then that z(x )  
value is a spatial outlier. 

Resistant rootworm density and variograms of dam- 
age. -Outliers can completely overwhelm a variogram 
and mask structure. For example, consider the omni- 
directional variograms using the raw data for the beetle, 
the same data after h-scattergram cleaning, and the 
data after Hawkins’ method has been employed (Fig. 
54). All three sets of data appear to show isotropic 
behavior, so these omnidirectional models are suffi- 
cient. The variogram of the raw data has a pure nugget 
structure, and one might conclude that the beetle rating 
has no spatial dependence, at least at the scale mea- 
sured. The other, outlier-free variograms tell a different 
story: these variograms suggest (1) spatial continuity 
exists at less than the minimum sample spacing of 1.6 
km and (2) the ratings demonstrate an average scale 
of spatial correlation of = 15-18 km. Both outlier-free 
variograms have very similar structures. 

The variogram results of both outlier identification 
procedures are highly dependent on the conditions im- 
posed in the analysis. For the h-scattergram cleaning, 
the ratings that paired the largest differences (i.e., “4” 
with “0,” “4” with “1,” and “3” with “0”) were ex- 
cluded from the variogram calculation for all signifi- 
cant lags. The decision to exclude comparisons be- 
tween data with the largest differences was based solely 
on the knowledge that the larger the differences be- 
tween z(x) and z(x + h), the larger will be the variogram 
value, especially at small lags. The largest difference 
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FIG. 54. Raw data and resistant omnidirectional vano- 
grams for the Diabrotica barberi density rating data (J. Tol- 
lefson, personal communication). One resistant method uses 
Hawkins’ ( 1  980) and the other employs the h-scattergram 
cleaning technique. 

cutoff of three was arbitrary. Hawkins’ technique was 
implemented at the 95% level of confidence and with 
a search neighborhood of ~ 6 . 5  km. The choice of a 
neighborhood size in Hawkins’ method was based on 
a purely subjective rationale: choose the one that pro- 
duces the best-looking variogram structure. However, 
experience has shown that through successive trials, 
by plotting average variance vs. neighborhood size, the 
outlier-free variogram that demonstrates the strongest 
structure corresponds to the neighborhood size that has 
the smallest average variance. Hawkins’ method iden- 
tified 46 outliers or Z 17% of the total number of sam- 
ples. Most were large ratings (18 “3”s and 20 “4”s), 
but a few were small (3 “0”s and 5 “1”s). 

Notice that the variograms are computed out to a 
distance ofjust over 30 km. The nine counties surveyed 
in Tollefson’s study are distributed over 37 x 1 O 3  km2. 
Three counties are contiguous, two sets of two counties 
each share a common boundary, and the final two 
counties are independent of the rest. Because the av- 
erage area of these five sampled areas is ~ 6 0  x 60 km, 
the maximum significant variogram lag is ~ 3 0  km. 

The outlier-free variograms for root rating have be- 
havior similar to the beetle rating models (Fig. 55). 
Again, the omnidirectional variogram computed with 
the raw data set shows pure nugget behavior. The sim- 
ilar outlier-free data manifest more noise than the beetle 
data, but have a comparable range of z 15 km. The 
greater noise in these data, especially at small lags, 
could be due to the multiplicity of biotic and abiotic 
factors beyond corn rootworm feeding that affect root 
morphology and pathology. The h-scattergram cleaned 
data excluded “3”-“0” and “3”-“ 1” root-rating pair- 
ings, and Hawkins’ method was employed with a 16- 

km neighborhood and at the 95% confidence level. 
Hawkins’ technique identified only 15 outliers (or 5% 
of the total number of points), and these values split 
about evenly between small ratings (8 “0”s) and large 
ratings (6 “2”s and the one “3”). 

Since both the beetle- and root-rating outlier-free 
data sets reflect similar ranges, a cross-variogram could 
be used to test the suspected relationship between beetle 
density and root damage. Outlier-free cross-vario- 
grams do indeed display a positive cross-correlation 
with about the same 15-km range (Fig. 56). As before, 
the cross-variogram computed using the raw data dem- 
onstrates noisy, pure nugget behavior. Without first 
attending to possible outliers, the individual and joint 
spatial dependence between these variables may have 
been overlooked. 

Beyond outliers: a possible temporal  lag efect. - Pres- 
ence of outliers may help to explain why the raw data 
variograms and the cross-variogram demonstrate pure 
nugget behavior, but they do not explain why an un- 
usually large value exists within small ones or small 
values exist within a field of large ones. Moreover, the 
outliers alone may not fully explain the concurrent 
small Pearson correlation coefficient and large pro- 
portion of cross-correlation shown in the beetle den- 
sity-root damage cross-variogram in Fig. 56. Certainly, 
animal distributions are rarely uniform, but the phe- 
nology of Diabrotica (see Chiang 1973) and the exi- 
gencies of field sampling over large areas and within a 
constrained time may provide additional ecological 
clues. 

After the larvae emerge, it takes z 2 wk for the insects 
to mature into adults. Only adult rootworm beetles can 
fly, and these adults typically then migrate to find mates 
and lay eggs. Tollefson’s survey was purposely accom- 
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FIG. 55. Raw data and resistant omnidirectional vano- 
grams for the Zea mays root-rating data (J. Tollefson,persona/ 
communication). One resistant method uses Hawkins’ (1980) 
and the other employs the h-scattergram cleaning technique. 
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FIG. 56. Raw data and resistant omnidirectional cross- 
variograms between the Diabrotica barberi abundance and 
Zea maj’s root damage rating data (J. Tollefson, personal 
communication). One resistant method uses Hawkins’ ( 1  980) 
and the other employs the h-scattergram cleaning technique. 

plished during the 2-wk development “window,” be- 
fore the rootworms migrated. As diligently as his work 
was performed, it is quite possible that some of the 
largest and smallest densities were not representative 
of the indigenous concentrations. Thus, large counts 
could be found in areas of minimal root damage and 
small densities could be found in areas of significant 
root damage. In this way, damage and beetle density 
are strongly and positively correlated spatially even 
though they have a small point-to-point (i.e., Pearson) 
correlation. The beetle densities and root damage es- 
timates lag each other spatially and could be due to a 
temporal lag effect from adult beetle migration. 

CONCLUSIONS 
Geostatistics offer the ecologist a wide and flexible 

variety of tools to organize and summarize spatial pat- 
terns. The frequently complex interaction between or- 
ganism and environment necessarily plays itself out in 
space. Traditional statistical measures often neglect 
spatial relationships because samples are assumed in- 
dependent. Applied statistical methods, such as geosta- 
tistics, are needed in ecology for modeling the strength 
and areal extent of that spatial correlation. The geosta- 
tistical toolbox contains many instruments for char- 
acterizing not only the spatial continuity inherent in 
an organism’s distribution or the spatial dependence 
of suspected environmental components, but also the 
spatial interdependence between the organism and its 
environment. 

Before implementing geostatistics, however, it is im- 
portant to perform a thorough exploratory data anal- 
ysis (EDA) of the data using traditional univariate and 
bivariate statistical procedures. EDA results identify 

and direct reasonable geostatistical procedures likely 
to produce meaningful results. A typical EDA com- 
putes univariate summaries (e.g., mean, variance, 
skewness, etc.) and constructs plots like a frequency 
distribution. Bivariate statistics ( e g ,  covariance, Pear- 
son and Spearman correlations coefficients) and scatter 
plots are also quite helpful. Nevertheless, as instructive 
as these summary statistics can be, perhaps the best 
method of gaining a “feel” for the data is through raw 
data plots and posting of values. 

Guided by the EDA, the ecologist can then use geo- 
statistics. The h-scatterplot is very informative. It can 
signal possible outliers, multiple populations, and trends 
in the data. To summarize, h-scatterplots across the 
span of significant lags, variograms, covariances, and 
correlograms should be used concurrently. 

Variograms statistically model the spatial depen- 
dence of an attribute or environmental component. 
They may be computed for a specific direction or as 
an average over all directions, or, with sufficient data, 
as a two-dimensional plot. However, since variograms 
include any local mean and variance differences that 
occur on a larger scale, tools that filter these local trends, 
like non-ergodic covariances and correlograms, should 
also be computed and their results compared to the 
variogram. Differences among the three measures al- 
low identification and quantification of the pattern due 
to lag-to-lag changes and to the pattern from larger- 
scale, mean and variance differences. If the variogram 
is the sole tool of spatial continuity used, then the 
ecologist may be left with an incomplete and poten- 
tially misleading model of spatial dependence. 

Variograms, covariances, and correlograms can 
identify anisotropies and hole effects. Directionally dis- 
tinct models that display the same sill but different 
ranges (i.e., geometric anisotropy) signal preferential 
directions for the variable of interest. Directional mod- 
els that display different sills but the same or similar 
ranges (i.e., zonal anisotropy) reveal directions along 
which an additional structure of variability is present. 
Commonly, both kinds of anisotropy are present in a 
data set. Finally, a model that demonstrates sinusoidal 
behavior is symptomatic of a phenomenon with a spa- 
tially periodic component. The frequency and ampli- 
tude exhibited in the plot model the corresponding 
spatial frequency and amplitude exhibited in the vari- 
able(s) of interest. 

Indicator coding of data is also powerful for studying 
ecological phenomena. In the first place, it permits, 
using indicator variograms, covariances, and correlo- 
grams, the measurement of the spatial continuity of 
nominal variables. Second, indicator coding can be 
used when the position of an organism or environ- 
mental component is to be considered rather than its 
size, density, or some other quantitative or qualitative 
measure. Third, indicator coding allows specification 
of the spatial geometry of a particular category or a 
class in a variable’s frequency distribution. These abil- 
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ities provide potent new dimensions for interpreting 
plant and animal spatial patterns. 

Finally, since ecology is the study of the interrela- 
tionships between organisms and their environments, 
perhaps the most useful geostatistical tools are the ones 
that summarize and quantify the joint spatial depen- 
dence or continuity between variables. Like the tools 
that are computed on a single variable, cross-vario- 
grams, cross-covariances, and cross-correlograms 
should also be computed and compared cooperatively. 
When computing these measures it is especially im- 
portant to consider all directions, since there is a lack 
of + h and - h symmetry in the cross-covariance and 
cross-correlogram. 
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