Physical Geology Chapter 7 Metamorphic Rocks

 

Metamorphic rocks & the process of metamorphism

 

Meta – “change”     morph – “body”

 

Can start as any other type of rock:

 

  igneous

    sedimentary

      metamorphic

 

 

Figure 7.1  3.8 BY old metamorphic rock from Greenland

This is a metamorphosed granodiorite, and provides evidence of the oldest known continent-forming event in Earth history.

 

 Topics covered:

•  Agents of metamorphism

•  Changes associated with metamorphism

•  Examples of metamorphic rocks

•  Metamorphic grade and facies

 

Value of metamorphic rocks

Metamorphic minerals indicate

  temperature & pressure conditions

 

 

Continents are underlain by metamorphic rocks

 

 

Economically valuable:

    marble

    architectural stone

    slate (shingles, blackboards, pool tables)

    ore deposits:     copper, lead, zinc, iron

 

North American Craton

 

 

 

 

 

  Core of the continent made of very old metamorphic rocks  with granitic plutons

 

Figure 20.3   Canadian Shield

Figure 20.4  Geologic section across the craton, showing Precambrian

         metamorphic basement and granitic plutons

 

Figure 20.5  Satellite image showing the Australian craton

Dark gray: 3.0-3.5 BY metamorphic rock

 

Light gray: granite domes 2.8-3.3 BY

 

Brown to reddish: sedimentary and volcanic rocks

 

Initial composition of rock

Really important for the final outcome

 

  can’t create new minerals if the right mixture isn’t there

 

 

For example,

  starting with a quartz arenite, it’s not possible to make

   an amphibolite (not enough Fe & Mg)

 

Physical factors associated with metamorphism

         Heat       Pressure

 

 

 

 

         Fluid activity

 

Heat

How to heat rocks:

  (1)  move the rocks to the heat – regional metamorphism

  (2)  bring the heat to the rocks – igneous intrusion and contact metamorphism

 

Geothermal gradients  refer back to Figure 3.15

  Typically about 3ΊC per 100 m down into the crust

  May be much higher in volcanic regions and near igneous intrusions

 

Pressure

  Confining, or lithostatic pressure:  equal in all directions

 

  Differential pressure:  varies with direction

 

 

 

Fluids

For example:

  Mg2SiO4  +  2 H2O  =>  Mg3Si2O5(OH)4  +  MgO

 

  olivine     +  water  =>  serpentinite + Mg oxide

 

 

 

Where do fluids come from?

 

•  pore water in sediments

•  dehydration of hydrous minerals (clays)

•  cooling of magma

 

Confining pressure

Figure 7.2

10 meters of seawater  equals 1 atmosphere of pressure

 

Hydrostatic pressure

 

 

3.3 meters of rock equals 1 atmosphere of pressure

 

Lithostatic pressure

 

Figure 7.3  Differential pressure can be uneven pressure or shearing pressure

 

Figure 7.4   A deformed conglomerate

 cobbles did not melt, but did squish

 

 

Figure 7.5  Orientation of minerals –

  response to stress

 

 

Figure 7.6

 

 Minerals that crystallize under stress – Obvious visual appearance

 

 

 

 

NON-foliated metamorphic rock

Figure 7.7  Fairly random mineral orientation

 

 

Foliated metamorphic rock

 

         Figure 7.7  Preferred mineral orientation

 

 

Mica crystal growth (as a metamorphic process)

         Cover Figure 7.00  Heated, stressed, and bent

while mica   crystals grew

 

Similar composition, same minerals

 

  Non-foliated granite compared to foliated gneiss

  The banding in the gneiss is the response to differential pressure

 

 

 

 Metamorphic grade and index minerals

         Low grade    Intermediate grade    High grade    Partial melting   Melting

 

Concept of index minerals:

Different minerals are formed at each metamorphic grade, the presence of these minerals in a metamorphic rock indicates the conditions of metamorphism (pressure & temperature)

 

A typical sequence of index minerals, from low grade to high grade:

chlorite     muscovite    biotite    garnet    staurolite    sillimanite

 

Those four factors, again

:

  Composition (initial composition)

  Temperature

  Pressure

  Fluids

 

And remember:

metamorphism occurs WITHOUT melting

 

 

 

Table 7.1    Parent rocks & metamorphic rocks

 

         Goes back to initial composition

 

*** know the parent rocks for these metamorphic rocks ***

         marble    quartzite    hornfels

 

Limestone into marble   Figure 7.8

 

 

  CaCO3

as calcite

large, interlocked crystals

 

Metamorphic styles: Contact metamorphism

 

 

  Figure 7.19  Magma intrusion into limestone

 

Depth, heat and metamorphic grade

 

 

  Figure 7.9  Vertical sequence of metamorphism

sediments   silt (original sediment)

  sedimentary rock   shale (lithification)

   

slate   (platy minerals align)

     

phyllite    (new micas form, rock has a wavy luster)

       

mica schist    (can see mica grains, minerals depend on grade)

         

garnet mica schist  (garnets form at high T & P)

            

gneiss    (minerals separate into distinct bands or lenses)

             

migmatite   (almost melting; partial melting then cooling)

 

 

***  Know the sequence:  slate    phyllite    schist    gneiss    migmatite  ***

 

 

Slate:  Heated (slightly) and squeezed shale  Figures 7.10 & 7.11

 

   

Same minerals, rotated in response to stress,

      partial (minor) recrystallization

 

Breaks easily along flat, parallel planes

 

Phyllite:     Figure 7.12

 

Newly formed micas, still small grains

 

Commonly crinkled, with a shiny luster

 

Garnet mica schist   Figure 7.13

Garnet – a single tetrahedron silicate increasing T & P

 

Crystals can be seen with the unaided eye

 

Gneiss    Figure 7.14

Light and dark bands or lenses of minerals

 

Typically micas & amphiboles (dark) feldspars (light)

 

Migmatite    Figure 7.15

Not quite igneous, but past being a metamorphic

 

Partial melting, then cools and resolidifies

 

Metamorphic styles: Regional metamorphism

 

 

 

 

 

 

 

 

 

  At a convergent plate boundary Figure 7.22

 

*** Make sure you understand the processes presented in

Figure 7.22 ***

 

 

Hydrothermal systems

 

  Mid-ocean ridge  Figure 7.17

 

 

  Hydrothermal circulation over a magma chamber  (think Yellowstone)

 

     Figure 7.21

 

 

 

Table 7.3  Hydrothermal processes

 

Ore bodies  Box 7.5

 

 

Hydrothermal circulation concentrates elements into ore bodies

  in the  country rock

 

Brigham Canyon copper mine (Cu, Ag, Au)

 

  deepest open-pit mine in the world  800 m deep x 4 km wide

 

Ore veins  Figure 7.20

 

Metamorphic facies – Temperature & Pressure space

 

 

 

 

  Box 7.4  Figure 1 

    A, B & C represent different settings

        

Subduction zone    Plate interior    Volcanic-plutonic complex

 

Regional metamorphism    Figure 7.22

 

  Plate interior – normal T & P gradients

  Volcanic-plutonic complex – high T, low P

  Subduction zone – low T, high P

 

 

 

 

 

Core of the North American continent

 

  Each piece represents a major collision event, or a series of  related events

 

A field example of metamorphism:
   Creating marble

 

 

         A natural marble outcrop

         A metamorphic complex

 

Naxos Island, Greece, in the Aegean Sea

 

 

Limestone over a thermal dome

 

marble    diorite    mica schist   

migmatite

        

Marble quarry

         Hydrothermal intrusions into the marble