

Waves

Parts of a wave:

amplitude crest trough (H/2)

Wave as an oscillation

Waves are energy

The energy moves through the water as a wave form

The water particles move in circles (orbits) as the wave passes

REALLY important point related to tsunamis:

The longer the wavelength, the faster the wave

C = 1.25 * sqrt (wavelength)

Wave speeds

Deep-water wind wavesMaximum values:Period20 secondsWavelength600 metersSpeed110 kilometers per hour(70 mph)

Seismic sea waves (shallow-water waves) <u>Maximum values</u>: Period 20 minutes (60x wind waves) Wavelength 200 kilometers (120 miles) Speed 760 kilometers per hour (470 mph)

Wave speed: Celerity

C = L / T (equivalent to R = D / T)

For surface waves in water, the longer the wavelength, the faster the celerity

Wave dispersion, away from a storm center

(a) DEEP-WATER WAVE TRANSFORMATIONS

Waves in shallow water

Energy is lost from the wave because of friction with the bottom

As a wave moves into shallow water:

- speed decreases
- wavelength decreases
- height increases

Waves in shallow water

(b) SHALLOW-WATER WAVES IN PROFILE

Surging wave

176

Scale of a tsunami

Tsunami

Tsunami is Japanese for "harbor wave"

- Caused by the vertical displacement of ocean water
- Triggered by:
 - Large earthquakes that move the sea floor Underwater landslides
 - Volcano flank collapse
 - Submarine volcanic explosion
 - Asteroids
- Another category: Mega tsunami

Ways to create a tsunami

Subduction-zone earthquake

larger than M 7-7.5

100 years later stored tension

Fault rupture

Response after earthquake

0 minutes

10 minutes

-20 minutes

Tsunami path through the ocean

Meulaboh, Indonesia

Meulaboh, Indonesia

Meulaboh, Indonesia

Banda Aceh, Indonesia

Banda Aceh, Indonesia

Copyright © 2008 Pearson Prentice Hall, Inc.

Kata Noi receding wave

Water receding from shoreline

Water receding from shoreline

Ways to create a tsunami

Submarine landslide on edge of slope

Submarine landslide

Simulation of landslide-induced wave

Minimizing the Tsunami Hazard Detection and warning Monitor earthquake zones

Tsunami warning system Seismographs to detect earthquakes Tidal gauges to determine sea level changes Buoy sensors to detect tsunami in open ocean

Structural control Building codes for susceptible coastline areas

Run-up maps Show the height to which water is likely to rise

Tsunami warning system

Communications buoy

Receives data from ocean floor along with readings from surface weather instruments, and relays to a satellite.

Flotation device

Computer

Batteries

Sends signal to buoy

> Anchor chain — Up to 19,700 ft. (6000 m) long

Bottom-pressure recorder

Can detect minute changes in water pressure caussed by a passing tsunami as small as 0.4 in (1 cm) Anchors 6850 lbs. (3107 kg)

Antennas

(a)

Tsunami run-up map

Mega tsunami

North Atlantic Ocean

Tenerife, Canary Islands

Alika submarine landslide

Alika submarine landslide

Asteroid impact

Volcanoes

Volcanoes occur in what tectonic settings?

Subduction zones (convergent margins) Volcanic island arcs Coastal mountain ranges Difference?

Hot spots Oceanic crust Continental crust <u>Examples</u>?

Continental rifting zones

Example?

Mid-ocean ridge

Is this a problem to people anywhere?

Tectonic settings for volcanoes

Subduction zones Mid-ocean ridge

Hot spots

Continental rifting

Where, geographically, are most of the volcanoes?

Volcanic island arc An example is....

Volcanic island arc – Japan

Where?

What feature?

Name of a famous volcano?

Which ocean? Many active volcanoes?

Where?

What is happening? Many volcanoes?

Subduction zone processes

Sediment transported to deep ocean floor \

Sedimentary rock

Sediment transported into basin

Sedimentary metamorphic

Partial melting of metamorphic rock

Sedimentary rock metamorphosed in subduction zone

Hot mantle rock partially melts to form magma

What tectonic event? Active volcanoes?

Other recent event?

Plate boundaries, volcanoes, & earthquakes

Types of volcanoes

Profile of Volcano

Which volcanoes flow? Basaltic lava flows easily *Where could this be*?

Which volcanoes explode? Rhyolitic and andesitic lavas tend to explode water & gasses under pressure, viscous magma

Granite – Diorite – Gabbro

Brian J. Skinner

The EXTRUSIVE equivalent igneous rocks?

Rhyolite /

Andesite

Basalt

Composition and Texture

Magma type Coarse grained

Fine grained

Mafic (from mantle) Intermediate (mixture) Felsic (continents) Gabbro

Diorite

Basalt

Andesite

Granite

Rhyolite

Tectonics & types of igneous rocks

Which volcano is more likely to erupt explosively?

Think about the tectonic setting of each, and the type of magma

Mt. Fuji, Japan

Mauna Loa, Hawaii

View of the Big Island of Hawaii

Mauna Loa, Hawaii

Copyright 2005 M & J Hey

Mt. Fuji, Japan

11%

Geography: Where on North America are most of the active volcanoes?

Cascades volcanoes of the Pacific Northwest

Subduction of Juan de Fuca plate

Volcanoes produced by subduction

Juan de Fuca plate is young, hot, low density

The Cascades, Washington and Oregon

Hood

Jefferson

St. Helens

Mount St. Helens before eruption 1980

Bulge on NE flank prior to eruption

Initial blast - 500x the Hiroshima bomb

Mount St. Helens

Mount St. Helens After eruption (7 years later)

USGS Photo by Lyn Topinka, March 1987

States (or Phases) of Matter

LIQUID

GAS

liquid short range order

SOLID

solid long range order

Controls on phase transitions

Phase transitions are controlled by: heat (energy available – outward force) pressure (constraining force)

Phase transitions and rocks

Most rocks are made of more than one mineral. Each mineral melts at a different temperature.

So, a rock can be *partially molten* – with liquid in between solid crystals

Phase transitions and rocks

Can a rock in the upper mantle melt without an increase in temperature?

Earth surface

Produces magma

Partial melting

Uplifted, pressure reduced

Rock initially at a temperature close to melting

What happened here?

NE STATES

Forming a caldera – Crater Lake, Oregon

