Energy at the Earth surface

Three primary sources of energy driving processes at the Earth surface

Heat from the core Solar radiation Gravity Energy from the Sun

Drives the hydrologic cycle

Provides chemical energy to sustain {almost} all life on the planet

Produces differential heating of the oceans and atmosphere that drives circulation and creates weather

Concepts of energy and heat

Force – pushing or pulling, mass x acceleration

Work – force applied over a distance

Power – the rate of work being done *example of different batteries driving a fan* Types of energy

Kinetic energy energy of a mass in motion

Newton's First Law of Motion

An object at rest will remain at rest ... An object in motion will remain in motion ...

UNLESS _____

Types of energy

Potential energy

stored energy available to be converted to kinetic energy

Types of potential energy (How can energy be stored?)

> gravitational chemical electrical elastic

Heat

Fundamentally, what is heat?

The kinetic energy of molecules vibrating and moving (colliding)

A balloon as a physical model forces pushing out forces pushing in

Heat

Ways of transferring heat

Conduction Convection – convection cells Radiation – electromagnetic energy

Transfer of heat

Density and buoyancy

In a *FLUID*, materials will rise or sink according to density

What is the driving force for buoyancy?

Density & Buoyancy

Composition: He H

Density & Buoyancy

Composition: $SF_6 CO_2 O_2 N_2$

Atmospheric physics

Atmospheric pressure

Static at sea level High pressure Low pressure

Humidity, relative humidity, and dewpoint

Compressing and expanding air

Energy balance for the Earth

Spectra of incoming vs. outgoing radiation

The Earth's magnetosphere

10 Earth radii to 1000 Earth radii

Ozone is produced in the stratosphere and absorbs incoming UV from the Sun

CFCs and ozone depletion

on

CFC = chloro fluoro carbon

The ozone hole over Antarctica

Projected ozone recovery because of restrictions

Ozone depletion avoided

The year is 2065.

Two-thirds of Earth's ozone is gone – not just over the poles, but everywhere.

The ozone hole over Antarctica has a twin over the North Pole.

The UV radiation on mid-latitude cities like Columbus is strong enough to cause sunburn in 5 minutes.

DNA-mutating UV radiation is up more than 500 percent, with harmful effects on plants, animals, and human skin cancer rates.

Ozone Concentration (Dobson Units)

100	200	300	400	500	600

Atmospheric pressure

About 90% of the mass is in the troposphere

Figure 8.10

Low pressure High pressure

Atmospheric high and low pressure

In the Northern Hemisphere:

Low pressure – rising air, moving inward, condenses to produce clouds and precipitation, counter-clockwise circulation, these are the storms hurricanes & extratropical storms

Atmospheric high and low pressure

In the Northern Hemisphere:

High pressure – sinking air, moving outward, compresses and heats, clockwise circulation, associated with clear skies, dry conditions

Rising air, low pressure, precipitation

Figure 8.8

Rising air, low pressure, precipitation

Concepts and processes:

Absolute humidity Relative humidity Dewpoint

Sensible heat

Latent heat of vaporization – from liquid to vapor 540 cal of melting – from solid to liquid 80 cal

Compression and expansion of a gas

Coriolis effect – deflection of moving objects

Global distribution of heat

Atmospheric circulation

Tropical convection cells

Global atmospheric pressure

Outgoing radiation

shortwave radiation

longwave radiation

watts/m²

100

356

Heat loss and gain from the oceans

Weather fronts

Occurrence of thunderstorms

A developing thunderstorm

Figure 8.16

Producing a tornado

Figure 8.19

(d)