Introduction

• Mass wasting

Rapid downslope movement of rock or soil as a coherent mass Includes: landslides, debris flows, slumping, avalanches

• Slope processes

Materials are always in motion downslope All slopes are constantly evolving

To have a slope *requires* an active process

Different types of slopes

Very hard strong granite

Relatively weak rock

(b)

- Segment types depend on material and climate
 - High cliff or free face
 - Talus slope at the base
 - Convex slope
 - Straight slope
 - Concave slope

Cliff or free face

Very hard strong granite

Cliff-forming rocks: granite, cemented sandstone, limestone

Cliff or free face

Rounded slopes

Relatively weak rock

Convex slope

Soil

Slope-forming rocks: shale, weak metamorphic rocks, rocks crumbled by tectonic forces

Cliff-forming and slope-forming rocks

Cliff-forming and slope-forming rocks

Types of landslides – Fall

Rockfall

Note other boulders in the neighborhood – not an uncommon event

Slope instability

0

Soil

0

C

 Shallow landslide in soil above rock

Soil

– Landslide deposit

O

Soil slip

Translational slide (vs. rotational)

Types of landslides – Slumps Slumping Sliding along a curved plane Upper slump Rotates and slips down along a growth fault Lower flow or slip plane mount Complex sliding, slumping and flowing Figure 6.6e (e)

Figure 6.6c

Types of landslides – Flows

Commonly associated with water saturation

Toe of flow

An earthflow

Flow deposits

A debris flow (more water)

Summary table in the textbook

TABLE 6.1 Common Types of Landslides and Other Downslope Movements		
Mechanism	Type of Mass Movement	Characteristics
Fall	Rock fall	Individual rocks fall through the air and may accumulate as talus.
Slide	Slump	Cohesive blocks of soft earth material slide on a curved surface; also called a rotational landslide.
	Soil Slip	Soil and other weathered earth material slide on a tilted surface of bedrock or cohesive sediment; also called a debris slide or earth slide.
	Rock slide	Large blocks of bedrock slide on a planar surface, such as layering in sedimentary or metamorphic rocks.
Flow	Avalanche	Granular flow of various combinations of snow, ice, organic debris, loose rocks, or soil which moves very rapidly downslope.
	Creep	Very slow, downslope movement of rocks and soil.
	Earthflow	Wet, partially cohesive and internally deformed mass of soil and weathered rock.
	Debris flow	Fluid mixture of rocks, sand, mud, and water that is intermediate between a landslide and a water flood; includes mudflows and lahars.
	Complex	A combination of two or more types of sliding, flowage, and occasionally falls; forms where one type of landslide changes into another as it moves downslope.

Fall Slide Flow

A complex landslide

La Conchita California 1995

between Los Angeles and Santa Barbara

at the base of an ancient sea cliff

uplift rates of meters per 1000 years

* * * * * * * * * *

Make sure you read about this in the textbook *******

And then again in 2005

Earthflow

Would retaining walls help?

What would work?

Forces on slopes

- Downslope driving forces
 - Weight of the slope material
- Resisting forces
 - Shear strength of the material

Compare:

granite bedrock weathered granite consolidated sandstone dry sand // wet sand mud

Forces on slopes

- Type of material and result
 - Slope failure weak materials

volcanic rocks, shale

earthflows, debris flows, or slumps

- Rock falls resistant rock over weak rock
- Degree of consolidation
 - Slumps unconsolidated materials (loose sediments)
 - Soil slip unconsolidated materials over bedrock

Forces on slopes: Other conditions

- Steepness of slope // Topographic relief Compare Toledo with Boulder, Colorado
- Zones of weakness potential slip planes

Really Important – Addition of Water

• Permeability

especially when layers have contrasts in permeability

What does water DO that makes slopes unstable?

Forces on slopes:

- Climate
 - Amount and timing of water input (How?)
 - Vegetation on the slope

Track of flow -

Head of flow

Arid regions rock falls, debris flows

Humid regions complex landslides, earthflows, and creep

Flow deposits

Figure 6.11b

Geographic regions at risk from landslides

Links to other natural hazards

- Earthquakes, volcanoes, storms, and fires may cause landslides.
- Landslides may cause flooding or tsunamis.

Thistle, Utah

1983

Landslide blocks a canyon, floods upstream community

Site of a former landslide, and moved again in 1999

Figure 6.27

Factors that increase landslide potential

- Natural processes
 - Cutbank of a meandering river
 - Shoreline erosion undercutting a cliff
 - Extremes in precipitation

Coast of Oregon

Factors that increase landslide potential

Urbanization and development of landslide-prone areas

Tree cutting in landslide-prone areas

Changing global climate patterns

Factors that increase landslide potential

- Clearcutting and road construction
 - Increase erosion on unstable slopes
 - Redirect surface drainage
 - Change flow of groundwater

Upslope and downslope hazards

Figure 6.13

Road undercut by stream meander

Reducing landslide hazard

• Drainage control – minimize infiltration

(a)

Soil cement being applied \

Figure 6.22

Reducing landslide hazard

- Grading
- Slope supports and retaining walls

Figure 6.25

Architecture & engineering

Architecture & engineering

Architecture & engineering

End

