Fluvial systems – meandering rivers Rio Solimoes, Brazil synthetic aperture radar

Characteristics of meandering rivers

generally confined within one major channel

secondary channels active during floods

wide valley, channel is a small part of entire valley

Characteristics of meandering rivers

<u>Compared with braided river</u>:

- low gradient
- greater sinuosity
- greater % suspended load (less bedload)
- finer-grained sediments
- more constant discharge (usually perennial flow)

Meanders, San Joaquin River cohesive banks, little coarse sediment

Meanders, Sacramento River (transitional) less cohesive banks, moderate coarse sediment

Amazon River meanders

an extreme in bank stability (short-term)

Scroll plain Rio Apure, Orinoco Basin

Meanders and scroll plains

Cross section of river valley & channel

Landforms

Meandering and sinuosity

Path of highest-velocity flow

Point bars

lateral accretion of point bars

along inside of meander

Cut bank and point bar

Cut bank, Fountain Creek, New Mexico

Point bar, upstream Fountain Creek, New Mexico

Point bar, downstream Fountain Creek, New Mexico

Enhanced turbulence at confluence

Features of a meandering river

Figure 5.12a

(b)

bend

Oxbow lakes

Figure 5.12b

Cars on cut bank

Point bar

Figure 5.12c

Meander cut-off Forming an oxbow lake

Overbank deposition

Bankfull discharge

flood water level up to the top of the channel maintains the primary channel occurs once every 1-2 years

Bankfull discharge

Figure 5.8

Overbank deposition

predominantly vertical accretion (erosion is minor)

lower velocity than channel

finer-grained sediments

Main features:

Levee Floodplain (floodbasin) Crevasse splay Oxbow lake

Natural levees

rapid loss of water velocity over bank deposition of sand and fine sand

Natural levees

mostly on outside of meander

deposition of med sand near channel, then fine sand and coarse silt

ripple marks or laminae of fine sand / silt

Crevasse splay during flood Note levees clearly defined

Crevasse-splay deposit (after flood) Deposits graded vertically and laterally

Crevasse-splay deposits Bryants Creek, breach in man-made levee

Crevasse splay – larger scale Columbia River

River avulsion – switching channels

Avulsion and meander belts

2000 BP

1000 BP

River terraces – something changed

(c) After uplift

Concept of base level

Hypothetical balance between erosion, transport, and deposition

(a) Map (plan view) Figure 5.7b

(b) Longitudinal profile

Figure 5.7b

Effect of regional uplift

Effect of regional subsidence

Land surface subsides

Effects of changing base level

Downstream erosion caused by lack of sediment

Deposition of sediment in the new basin