#### Volcanism & extrusive rocks

**Extrusive** – lava or ash onto the Earth surface

```
pyroclastic
    pyro - fire
    clastic - small pieces of rock
```

#### Volcanic glass – obsidian



Figure 4.9

#### Andesite porphyry

What set of events creates a porphyry?



# Porphyry thin section

Figure 4.10



Vesicular basalt

Bubbles
produced
by expanding
gas in the
magma



Figure 4.11

#### Pumice

A volcanic glass full of bubbles

Usually rhyolitic (lots of silica)



#### Pumice



#### Volcanic bombs



#### Volcanic tuff



Figure 4.14

# Volcanic tuff Welded tuff 0.5 mm

#### Volcanic breccia



Big chunks of broken rock in a matrix of ash

#### Types of volcanoes

#### Table 4.2

#### Comparison of the Three Types of Volcanoes



# Another word for composite volcano: stratovolcano

#### Types of volcanoes



#### Tectonic settings for volcanoes



Subduction zones Mid-ocean ridge Hot spots

Continental rifting



#### Differences between magmas

Basaltic lava flows easily

Figure 4.1



#### Differences between magmas

Rhyolitic and andesitic lavas tend to explode water & volatiles under pressure, viscous magma



Cascades
volcanoes of
the Pacific
Northwest

Subduction of Juan de Fuca plate



Figure 4.5

#### Volcanoes produced by subduction

Juan de Fuca plate is young, hot, low density



#### The Cascades, Washington and Oregon



# Composite or strato-volcanoes Mt. Shasta, northern California

Composite or strato-volcanoes Mt. Fuji, Japan

#### Composite volcano



Figure 4.21

# Mt. Fuji, Japan



# Mt. Fuji, Japan



# Mt. Fuji, Japan



## Mount St. Helens before eruption 1980



#### Mount St. Helens

After eruption (7 years later)



#### Mount St. Helens





Mt. St. Helens eruption sequence





Mount St. Helens



#### Bulge on NE flank prior to eruption



#### Initial blast – 500x the Hiroshima bomb



## Pressure wave with 200 mph winds



#### Lahar – flow of hot, fluid mud



Mount St. Helens

Ashfall





#### Eruption from space

Blast covered 150 sq miles





Debris-avalanche deposits

Down-timber zone
Scorch zone
Pyroclastic flow deposit

Mudflow deposits, scoured areas







#### Forming a dome – because of viscous lava





Pyroclastic flow

Open vent



the side

#### Process of pyroclastic flow

Responsible for many of the volcano-related disasters in history

Pompeii



Figure 4.7

#### Result of pyroclastic flow

Mt. Pelée 1902

Martinique



Figure 4.8