Minerals in granite

The igneous rock granite is composed of many

separate grains of several main minerals

 1×10^{-7} or 0.0000001 mm

Figure 2.1

What is a *mineral*?

Naturally occurring solid

Specific chemical composition

Crystal structure (regularly repeating units in 3 dimensions)

Structure of halite

Mineral composed of Na Cl

What is a *rock*?

Naturally occurring solid aggregate

Made of one or more minerals Granite, basalt, rock salt, limestone

Consolidated aggregate of rock particles Sandstone, shale

Solid mass of rock-like materials *Coal, obsidian (a volcanic glass)*

Electron shells of an atom

Nucleus is a small part of the total volume

Nucleus – made of protons and neutrons Electrons orbiting the nucleus

Filling shells – Na and Cl

Na has only 1 electron in the outer (3rd) shell

Cl needs 1 more electron in the outer (3rd) shell

Figure 2.5

Alkali metals and halogens react																	
	+1			Tra	ans	sfe	r o	fa	n e	ele	ctr	on			-1	I	
alka	ali n	neta	Is													$\mathbf{\nabla}$	
н														hal	oge	ens	He
254	Be											в	C	N	0	F	Ne
	Mg											A1	Si	Р	S	Ci	Ar
-	Ca	Se	Ti	V	Car	Ma	Fe	Co	Ni	Cu	Za	Ga	Ge	As	Se	Br	Ke
335	Sr	Y	Zx	NЪ	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	S b	Te	I	Xe
6.0	Ba	La	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	РЬ	Bi	Po	Åt	Ra
The	Ra	Ac	Rſ	Ha	Sg	Ns	Hs	Mt					81 8				

Noble gases

The result: two ions

Each ion is much more stable than the neutral atoms

The two ions are attracted to each other by the electrical charge (similar to magnets)

Box 2.2

Ionic bonds hold together NaCl

The 3-D repeating structure is a crystal, and forms the mineral *halite*

Covalent bonding of water

The hydrogen atoms and the oxygen *share* two electrons in the outer electron shell

Forms a *covalent bond*

Bonds between atoms & molecules

Strong Covalent bonds – the electrons are shared between the atoms, keeping the nuclei close together

> Metallic bonds – nuclei stay close together, but the electrons are free to flow along a group of atoms

Ionic bonds – electrons stay on one atom, creating positive and negative ions

Weak Hydrogen bonding (between molecules)

Crystals of carbon

Different configurations of covalent bonds

Diamond

Graphite

Covalent bonds are generally strongest

Examples from the textbook: graphite and diamond

Graphite – 2-D bonding

Sheets of C with strong covalent bonds

Van der Waals bonds between the sheets

** Weak **

Can't withstand shearing force

Diamond

Interlocked 3-D framework

Mineral groups

Table 3.3 in the textbook

Mineral Group	Negatively Charged Ion or Radical	Examples	Composition
Carbonate	(CO3)-2	Calcite	CaCO3
		Dolomite	CaMg(CO ₃) ₂
Halide	CI ⁻¹ , F ⁻¹	Halite	NaCl
		Fluorite	CaF ₂
Native		Gold	Au
element		Silver	Ag
		Diamond	С
		Graphite	С
Oxide	O ⁻²	Hematite	Fe ₂ O ₃
		Magnetite	Fe ₃ O ₄
Silicate	$(SiO_4)^{-4}$	Quartz	SiO ₂
		Potassium feldspar	KAlSi ₃ O ₈
		Olivine	(Mg,Fe) ₂ SiO ₄
Sulfate	(SO ₄) ⁻²	Anhydrite	CaSO ₄
		Gypsum	$CaSO_4 \cdot 2H_2O$
Sulfide	S ⁻²	Galena	PbS
		Pyrite	FeS ₂

Carbonates

Basic polyatomic ion – CO_3^{-2}

Most common forms:

 $Ca^{+2} CO_3^{-2}$ calcite and aragonite

(Ca⁺², Mg⁺²) CO_3^{-2} dolomite

** These minerals make up limestone, ** and stalactites in caves

Halides (from *halogen*) – salts

Fluorite – CaF₂

Halite – NaCl

Native metals

Native gold

Native gold in quartz hydrothermal

Oxides – metals combined with oxygen

Commonly with water (oxyhydroxides)

Limonite – iron oxyhydroxide

The sulfides – sulfur with no oxygen Galena – PbS_2 lead sulfide

Common hydrothermal minerals

Pyrite – FeS₂ iron sulfide

Sulfates – sulfur with oxygen

Basic polyatomic ion – SO_4^{-2}

Some common forms: $Ca^{+2} SO_4^{-2} * H_2O$ gypsum

Desert Rose

Calcanthite CuSO₄ * 5H₂O Hydrated Copper Sulfate The silicates – most of the planet

Basic polyatomic ion – SiO_4^{-4}

Most common forms:

Olivine (Fe,Mg) SiO₄

Feldspar (X Al Si₃O₈) X = Ca, Na, K

Quartz SiO₂

Two major groups of silicates:

Ferromagnesian Fe Mg SiO₄– iron & magnesium silicates

** most common minerals on Earth ** make up most of the mantle and oceanic lithosphere

Non-ferromagnesian X SiO₄– silicates without Fe & Mg typically substitute Ca, Na, K

** most common minerals of continents ** make up most of granite

Telling them apart

Ferromagnesian dark, black or greenish

Telling them apart

Non-ferromagnesian light, white, or clear

Minerals and igneous rock types

Granite – Diorite – Gabbro

A quick review: Phases of matter

States (or Phases) of Matter

GAS LIQUID SOLID

short range

order

long range

order

What Is Heat?

Heat results from the vibrations of atoms – this is kinetic energy

Heat is transferred along a **gradient conductive** – particle to particle **radiative** – by electromagnetic radiation infra-red radiation

Heat is measured with a thermometer BUT, how does a thermometer work? The effect of heat on **density** of matter Density = mass per unit volume

The effect of heat on **density** of matter

As temperature increases:

atoms (or molecules) vibrate faster and with greater amplitude

these vibrations "push" the atoms farther apart

which lowers the density of the material

So... how does a thermometer work?

Phase Transitions

Melting is the transition from solid to liquid freezing is the reverse

Evaporation (vaporization) is the transition from liquid to gas
condensation is the reverse

Controls on phase transitions

Phase transitions are controlled by: heat (energy available – outward force) pressure (constraining force)

Phase transitions and rocks

Most rocks are made of more than one mineral.

Each mineral melts at a different temperature.

So, a rock can be *partially molten* – with liquid in between solid crystals

Phase transitions and rocks

Can a rock in the upper mantle melt without an increase in temperature?

Earth surface

